巧了,北大林源渠编写的数学分析习题集中刚好有 x − [ x ] + s i n x x-[x]+sinx x−[x]+sinx 不是周期函数的反例,这个反例被我看到了,并且费了一番功夫找到了该函数不是周期函数的证明,结果在知乎上居然看到了关联如此紧密的问题,刚好可以回答。答案是不是,证明如下
首先我们有结论 ∀ x ∈ R , ∀ n ∈ Z 恒有 [ x + n ] = [ x ] + n \forall{x\in{R}},\forall{n\in{Z}} 恒有 \left[ x +n\right]=\left[ x \right]+n ∀x∈R,∀n∈Z恒有[x+n]=[x]+n (1)
该公式的证明见初等数论教材
用反证法,假设 f ( x ) f(x) f(x) 为周期函数,则存在 ∃ T ≠ 0 s . t ∀ x ∈ R \exists{T\ne0} s.t \forall{x\in{R}} ∃T=0s.t∀x∈R 有 f ( x + T ) = x + T − [ x + T ] + s i n ( x + T ) = x − [ x ] + s i n x = f ( x ) f(x+T)=x+T-[x+T]+sin(x+T)=x-[x]+sinx=f(x) f(x+T)=x+T−[x+T]+sin(x+T)=x−[x]+sinx=f(x) (2)
取 x = n ∈ Z x=n\in{Z} x=n∈Z 代入(2)式有
f ( n + T ) = n + T − [ n + T ] + s i n ( n + T ) = n − [ n ] + s i n ( n ) = f ( n ) = s i n ( n ) f(n+T)=n+T-[n+T]+sin(n+T)=n-[n]+sin(n)=f(n)=sin(n) f(n+T)=n+T−[n+T]+sin(n+T)=n−[n]+sin(n)=f(n)=sin(n) 上式中取 n = 0 n=0 n=0 得 T − [ T ] + s i n T = 0 T-[T]+sinT=0 T−[T]+sinT=0
于是 n + T − [ n + T ] + s i n ( n + T ) − ( T − [ T ] + s i n T ) = n + T − [ T ] − n + s i n ( n + T ) − T + [ T ] − s i n T = s i n ( n + T ) − s i n T = s i n ( n ) − 0 = s i n ( n ) n+T-[n+T]+sin(n+T)-(T-[T]+sinT) =n+T-[T]-n+sin(n+T)-T+[T]-sinT =sin(n+T)-sinT=sin(n)-0=sin(n) n+T−[n+T]+sin(n+T)−(T−[T]+sinT)=n+T−[T]−n+sin(n+T)−T+[T]−sinT=sin(n+T)−sinT=sin(n)−0=sin(n)
即 ∀ n ∈ Z \forall{n\in{Z}} ∀n∈Z 有 s i n ( n + T ) − s i n T = s i n ( n ) sin(n+T)-sinT=sin(n) sin(n+T)−sinT=sin(n) (3)
另外 2 k π ( k ∈ Z , k ≠ 0 ) 2k\pi (k\in{Z},k\ne0) 2kπ(k∈Z,k=0) 均为 s i n x sinx sinx 的周期,同时 α ∈ ( 0 , 2 π ) \alpha\in{(0,2\pi)} α∈(0,2π) 不为 s i n x sinx sinx 周期,否则 ∀ x ∈ R , s i n ( α + x ) = s i n x 于是 c o s α = s i n ( α + x ) = s i n ( π / 2 ) = 1 \forall{x\in{R}},sin(\alpha+x)=sinx 于是 cos\alpha=sin(\alpha+x)=sin(\pi/2)=1 ∀x∈R,sin(α+x)=sinx于是cosα=sin(α+x)=sin(π/2)=1 矛盾
于是 2 k π < y < 2 ( k + 1 ) π k ∈ Z 2k\pi<y<2(k+1)\pi k\in{Z} 2kπ<y<2(k+1)πk∈Z 不为 s i n x sinx sinx 的周期。否则 s i n ( x + y ) = s i n ( x + y − 2 k π + 2 k π ) = s i n ( x + y − 2 k π ) = s i n x ∀ x ∈ R sin(x+y)=sin(x+y-2k\pi+2k\pi)=sin(x+y-2k\pi)=sinx \forall{x\in{R}} sin(x+y)=sin(x+y−2kπ+2kπ)=sin(x+y−2kπ)=sinx∀x∈R 注意 0 < y − 2 k π < 2 π 0<y-2k\pi<2\pi 0<y−2kπ<2π 且 y − 2 k π y-2k\pi y−2kπ 为 s i n x sinx sinx 周期,矛盾。因此只有 2 k π ( k ∈ Z , k ≠ 0 ) 2k\pi (k\in{Z},k\ne0) 2kπ(k∈Z,k=0) 为 s i n x sinx sinx 周期,其余实数均不为 s i n x sinx sinx 周期
另外不难验证 1 , − 1 1,-1 1,−1 均为 x − [ x ] x-[x] x−[x] 周期,故任意非零整数均为 x − [ x ] x-[x] x−[x] 的周期
α ∈ ( 0 , 1 ) \alpha\in{(0,1)} α∈(0,1) 不为 x-[x] 周期,否则 ∀ x ∈ R x − [ x ] = x + α − [ x + α ] \forall{x\in{R}} x-[x]=x+\alpha-[x+\alpha] ∀x∈Rx−[x]=x+α−[x+α] 即 ∀ x ∈ R [ x + α ] − [ x ] = α \forall{x\in{R}} [x+\alpha]-[x]=\alpha ∀x∈R[x+α]−[x]=α 取 x = n ∈ Z x=n\in{Z} x=n∈Z 代入该式,则 [ n + α ] − [ n ] = n − n = 0 ≠ α [n+\alpha]-[n]=n-n=0\ne\alpha [n+α]−[n]=n−n=0=α
矛盾。此外 n < y < n + 1 n<y<n+1 n<y<n+1 n ∈ Z n\in{Z} n∈Z 不为 x − [ x ] x-[x] x−[x] 的周期,否则 ∀ x ∈ R \forall{x\in{R}} ∀x∈R
x + y − [ x + y ] = x − [ x ] ⇒ x+y-[x+y]=x-[x]\Rightarrow x+y−[x+y]=x−[x]⇒
x + y − [ x + y − n + n ] = x − [ x ] ⇒ x+y-[x+y-n+n]=x-[x]\Rightarrow x+y−[x+y−n+n]=x−[x]⇒
x + y − [ x + y − n ] − n = x − [ x ] ⇒ x+y-[x+y-n]-n=x-[x]\Rightarrow x+y−[x+y−n]−n=x−[x]⇒
x + y − n − [ x + y − n ] = x − [ x ] x+y-n-[x+y-n]=x-[x] x+y−n−[x+y−n]=x−[x]
注意 0 < y − n < 1 0<y-n<1 0<y−n<1 y − n y-n y−n 为 x − [ x ] x-[x] x−[x] 周期,矛盾。
故只有非零整数为 x − [ x ] x-[x] x−[x] 周期,其余实数均不为 x − [ x ] x-[x] x−[x] 的周期
于是我们断言 T ≠ 2 k π k ∈ Z k ≠ 0 T\ne2k\pi k\in{Z} k\ne0 T=2kπk∈Zk=0 若不然由已证得的结论, T T T 为 s i n x sinx sinx 的周期但不为 x − [ x ] x-[x] x−[x] 的周期,于是 ∃ x 1 ∈ R , s . t x 1 + T − [ x 1 + T ] ≠ x 1 − [ x 1 ] \exists{x_{1}\in{R}}, s.t x_{1}+T-[x_{1}+T]\ne{x_{1}-[x_{1}]} ∃x1∈R,s.tx1+T−[x1+T]=x1−[x1] 这样
x 1 + T − [ x 1 + T ] + s i n ( x 1 + T ) = x 1 + T − [ x 1 + T ] + s i n ( x 1 ) x_{1}+T-[x_{1}+T]+sin(x_{1}+T) =x_{1}+T-[x_{1}+T]+sin(x_{1}) x1+T−[x1+T]+sin(x1+T)=x1+T−[x1+T]+sin(x1)
≠ x 1 − [ x 1 ] + s i n ( x 1 ) \ne{x_{1}-[x_{1}]+sin(x_{1})} =x1−[x1]+sin(x1) 这样 T T T 不为 x − [ x ] + s i n x x-[x]+sinx x−[x]+sinx 的周期,这与反证法假设矛盾
因此 T ≠ 2 k π k ∈ Z T\ne2k\pi k\in{Z} T=2kπk∈Z k ≠ 0 k\ne0 k=0 从而 2 k 1 π < T < 2 ( k 1 + 1 ) π 2k_{1}\pi<T<2(k_{1}+1)\pi 2k1π<T<2(k1+1)π k 1 ∈ Z k_{1}\in{Z} k1∈Z
于是 T = α + 2 k 1 π T=\alpha+2k_{1}\pi T=α+2k1π 0 < α < 2 π 0<\alpha<2\pi 0<α<2π 这样由(3)式我们有 s i n ( n + T ) − s i n T = s i n ( n + α + 2 k 1 π ) − s i n ( α + 2 k 1 π ) sin(n+T)-sinT=sin(n+\alpha+2k_{1}\pi)-sin(\alpha+2k_{1}\pi) sin(n+T)−sinT=sin(n+α+2k1π)−sin(α+2k1π)
= s i n ( n + α ) − s i n α = s i n ( n ) ∀ n ∈ Z =sin(n+\alpha)-sin\alpha=sin(n) \forall{n\in{Z}} =sin(n+α)−sinα=sin(n)∀n∈Z
在 s i n ( n + α ) − s i n α = s i n ( n ) sin(n+\alpha)-sin\alpha=sin(n) sin(n+α)−sinα=sin(n) 中分别取 n = 1 , n = − 1 n=1,n=-1 n=1,n=−1 得
s i n ( 1 + α ) − s i n α = s i n 1 sin(1+\alpha)-sin\alpha=sin1 sin(1+α)−sinα=sin1
s i n ( − 1 + α ) − s i n α = − s i n 1 ⇒ sin(-1+\alpha)-sin\alpha=-sin1 \Rightarrow sin(−1+α)−sinα=−sin1⇒
s i n 1 c o s α + c o s 1 s i n a − s i n a = s i n 1 sin1cos\alpha+cos1sina-sina=sin1 sin1cosα+cos1sina−sina=sin1 (4)
− s i n 1 c o s α + c o s 1 s i n a − s i n a = − s i n 1 -sin1cos\alpha+cos1sina-sina=-sin1 −sin1cosα+cos1sina−sina=−sin1 (5)
(4)-(5)得 2 s i n 1 c o s α = 2 s i n 1 2sin1cos\alpha=2sin1 2sin1cosα=2sin1 即 c o s α = 1 cos\alpha=1 cosα=1 但 α ∈ ( 0 , 2 π ) \alpha\in{(0,2\pi)} α∈(0,2π) 矛盾
这就证明了 x − [ x ] + s i n x x-[x]+sinx x−[x]+sinx 不为周期函数,证毕