FM 模型

本文探讨了深度学习在自动驾驶感知系统中的应用,详细阐述了如何利用卷积神经网络(CNN)和循环神经网络(RNN)提高目标检测和轨迹预测的准确性。同时,文章还介绍了数据集的构建与标注过程,以及训练过程中采用的优化策略。
摘要由CSDN通过智能技术生成
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器
以下是 DeepFM 模型的 TensorFlow 2.0 实现代码: ```python import tensorflow as tf from tensorflow.keras.layers import Input, Dense, Dropout, Concatenate from tensorflow.keras.regularizers import l2 from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam class DeepFM: def __init__(self, feature_dim, embedding_dim=8, hidden_units=(32, 32), dropout_rate=0.5, l2_reg=0.01, learning_rate=0.001): self.feature_dim = feature_dim self.embedding_dim = embedding_dim self.hidden_units = hidden_units self.dropout_rate = dropout_rate self.l2_reg = l2_reg self.learning_rate = learning_rate def build(self): input_layer = Input((self.feature_dim,)) embedding_layer = tf.keras.layers.Embedding(self.feature_dim, self.embedding_dim)(input_layer) embedding_layer = tf.keras.layers.Flatten()(embedding_layer) linear_layer = tf.keras.layers.Dense(units=1, activation=None)(input_layer) fm_layer = tf.keras.layers.GlobalAveragePooling1D()(embedding_layer) deep_layer = tf.keras.layers.Dense(units=self.hidden_units[0], activation='relu')(embedding_layer) deep_layer = tf.keras.layers.Dropout(self.dropout_rate)(deep_layer) for units in self.hidden_units[1:]: deep_layer = tf.keras.layers.Dense(units=units, activation='relu')(deep_layer) deep_layer = tf.keras.layers.Dropout(self.dropout_rate)(deep_layer) deep_fm_layer = Concatenate()([fm_layer, deep_layer]) output_layer = tf.keras.layers.Dense(units=1, activation='sigmoid', kernel_regularizer=l2(self.l2_reg))(deep_fm_layer) model = Model(inputs=input_layer, outputs=output_layer) optimizer = Adam(lr=self.learning_rate) model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy']) return model ``` 其中,`feature_dim` 表示特征的维度,`embedding_dim` 表示嵌入层的维度,`hidden_units` 表示深度部分的神经元数量,`dropout_rate` 表示 dropout 比例,`l2_reg` 表示 L2 正则项系数,`learning_rate` 表示学习率。在 `build()` 方法里,我们首先定义了输入层和嵌入层,然后分别计算了线性部分、FM 部分和深度部分的结果,最后将 FM 和深度部分的结果拼接起来,并通过一个全连接层输出最终结果。这里使用了 Adam 优化器和二分类交叉熵损失函数,并编译了模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值