排序:
默认
按更新时间
按访问量

one hot encoding

项目中对离散特征,比如在广告系统中,用户的性别,用户的地址,注册资本,注册资本币种,所属行业,用户的兴趣爱好等等一系列特征,都是一些分类值。这些特征一般都无法直接应用在需要进行数值型计算的算法里.比如CTR预估中最常用的LR。那针对这种情况最简单的处理方式是将不同的类别映射为一个整数,比如男性是0...

2018-05-03 15:03:31

阅读数:45

评论数:0

机器学习算法与Python学习

机器学习算法与Python学习 机器学习系列阶段总结! 1. 机器学习(1)之入门概念 2. 机器学习(2)之过拟合与欠拟合 3. 机器学习(3)之最大似然估计 4. 机器学习(4)之线性判别式(附Python源码) 5. 机器学习(5)之决策树ID3及Python实现 6. 机器学...

2018-03-06 14:14:56

阅读数:166

评论数:0

利用SVD(Singular Value Decomposition)简化数据

参考:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html 利用SVD(Singular Value Decomposition)简化数据 奇异值分解(Singular value dec...

2017-10-22 15:58:47

阅读数:229

评论数:0

【Tensorflow】Windows下基于Anaconda的Tensorflow环境配置

转载:http://blog.csdn.net/ztf312/article/details/56018891 详细步骤见TensorFlow 安装教程 1. Anaconda下载安装:https://www.continuum.io/downloads 版本为:Anaconda3,for ...

2017-10-10 09:34:35

阅读数:389

评论数:0

Python入门深度学习完整指南

Python入门深度学习完整指南 介绍深度学习目前已经成为了人工智能领域的突出话题。它在“计算机视觉”和游戏(AlphaGo)等领域的突出表现而闻名,甚至超越了人类的能力。近几年对深度学习的关注度也在不断上升,这里有一个调查结果可以参考。这里有一个 Google 的搜索趋势图:如果你对这个话题感...

2017-10-09 16:12:16

阅读数:267

评论数:0

python 操作MongoDB

在本章中,我们将给出几个使用数据库的Tornado Web应用的例子。我们将从一个简单的RESTful API例子起步,然后创建3.1.2节中的Burt’s Book网站的完整功能版本。 本章中的例子使用MongoDB作为数据库,并通过pymongo作为驱动来连接MongoDB。当然,还有很多数...

2017-09-26 10:59:32

阅读数:558

评论数:0

python tornado 模板扩展

在第二章中,我们看到了Tornado模板系统如何简单地传递信息给网页,使你在插入动态数据时保持网页标记的整洁。然而,大多数站点希望复用像header、footer和布局网格这样的内容。在这一章中,我们将看到如何使用扩展Tornado模板或UI模块完成这一工作。 3.1 块和替换¶ 当你花时间为你的...

2017-09-25 12:05:51

阅读数:323

评论数:0

python tornade 模板扩展

在第二章中,我们看到了Tornado模板系统如何简单地传递信息给网页,使你在插入动态数据时保持网页标记的整洁。然而,大多数站点希望复用像header、footer和布局网格这样的内容。在这一章中,我们将看到如何使用扩展Tornado模板或UI模块完成这一工作。 3.1 块和替换 当你花时间为...

2017-09-22 14:36:36

阅读数:98

评论数:0

python tornade 表单和模板

在第一章中,我们学习了使用Tornado创建一个Web应用的基础知识。包括处理函数、HTTP方法以及Tornado框架的总体结构。在这章中,我们将学习一些你在创建Web应用时经常会用到的更强大的功能。 和大多数Web框架一样,Tornado的一个重要目标就是帮助你更快地编写程序,尽可能整洁地复用...

2017-09-22 14:30:56

阅读数:326

评论数:0

python基于tornade的高并发接口编程实战学习

第一章:引言 在过去的五年里,Web开发人员的可用工具实现了跨越式地增长。当技术专家不断推动极限,使Web应用无处不在时,我们也不得不升级我们的工具、创建框架以保证构建更好的应用。我们希望能够使用新的工具,方便我们写出更加整洁、可维护的代码,使部署到世界各地的用户时拥有高效的可扩展性。 这就让...

2017-09-22 10:38:37

阅读数:829

评论数:0

ubuntu下python+tornado+supervisor+nginx部署

由于之前在医院采集的数据都是拍照得到的处方图片,而需要用到的是处方的文本形式。因此这两个星期写了个小程序把服务器的图片显示给用户(到时候雇一些人),让用户根据图片录入文字信息。 之前都是用java写web,想到自己最近学机器学习要用python,所以用python来写一下,此外,因为想用点新东西...

2017-09-22 10:35:23

阅读数:122

评论数:0

Python,PyCharm2017安装教程,包含注册码

一,安装PyCharm1.下载PyCharm进入https://www.jetbrains.com/pycharm/download/#section=windows官网下载页面,可以到到PyCharm有两个版本,一个专业版,一个自由版本; 这里写图片描述建议下载专业版本,点击download...

2017-09-20 18:31:39

阅读数:488

评论数:0

spark 数据倾斜调优

一:均衡数据是我们的目标,或者说我们要解决数据倾斜的发力点。一般说shuffle是产生数据倾斜的主要原因,为什么shuffle产生数据倾斜主要是因为网络通信,如果计算之前通过ETL(ETL(Extract-Transform-Load的缩写,即数据抽取、转换、装载的过程)作为BI/DW(Busin...

2017-09-16 22:49:57

阅读数:120

评论数:0

elasticsearch知识点总结

1:es介绍 Elasticsearch是一个基于Lucene的实时的分布式搜索和分析引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。基于RESTful接口。普通请求是…get?a=1 rest请求….get/a/1 2:全文搜索...

2017-09-16 22:14:13

阅读数:105

评论数:0

Kafka+Spark Streaming+Redis实时系统实践

基于Spark通用计算平台,可以很好地扩展各种计算类型的应用,尤其是Spark提供了内建的计算库支持,像SparkStreaming、Spark SQL、MLlib、GraphX,这些内建库都提供了高级抽象,可以用非常简洁的代码实现复杂的计算逻辑、这也得益于Scala编程语言的简洁性。这里,我们基...

2017-09-16 21:41:02

阅读数:115

评论数:0

kafka->spark->streaming->mysql(scala)实时数据处理案列

kafka->spark->streaming->mysql(scala)实时数据处理示例开发环境 windows10 64、eclipse、spark-1.6、scala 2.0.4、java1.8、maven3.05 将spark中的assembly包引入即可使用loca...

2017-09-16 11:49:53

阅读数:164

评论数:0

spark读取kafka数据 createStream和createDirectStream的区别

spark读取kafka数据 createStream和createDirectStream的区别 1、KafkaUtils.createDstream 构造函数为KafkaUtils.createDstream(ssc, [zk], [consumer group id], [per-top...

2017-09-16 11:47:46

阅读数:195

评论数:0

Spark的Shuffle过程介绍

Spark的Shuffle过程介绍 Shuffle Writer Spark丰富了任务类型,有些任务之间数据流转不需要通过Shuffle,但是有些任务之间还是需要通过Shuffle来传递数据,比如wide dependency的group by key。 Spark中需要Shuffle输出的...

2017-09-15 21:48:37

阅读数:265

评论数:0

Java架构师,大数据架构师,高并发设计模式,机器学习知识点分享

第一章:java精品课程目录大全 1、亿级流量电商详情页系统的大型高并发与高可用缓存架构实战 1课程介绍以及高并发高可用复杂系统中的缓存架构有哪些东西?32分钟 2基于大型电商网站中的商品详情页系统贯穿的授课思路介绍7分钟 ...

2017-09-14 10:25:29

阅读数:2843

评论数:4

机器学习ML策略

机器学习ML策略 1、为什么是ML策略 例如:识别cat分类器的识别率是90%,怎么进一步提高识别率呢? 想法: (1)收集更多数据 (2)收集更多的多样性训练样本 (3)使用梯度下降训练更长时间 (4)尝试Adam代替梯度下降 (5)尝试更大的网络 (6)尝试更小的网络 (7...

2017-09-13 14:15:36

阅读数:298

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭