自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(145)
  • 收藏
  • 关注

原创 【系统分析师】4.5 分布式系统

当网络断了(P发生),你是选择暂停服务保证数据绝对正确(CP,如银行),还是继续服务但允许短暂数据不一致(AP,如网站)?· 核心矛盾:在享受扩展性红利的同时,必须直面由网络分区(节点间通信可能失败)、节点故障和时钟不同步所带来的一致性、可用性和复杂性等前所未有的挑战。CAP定理指出,在网络分区(P)发生时,系统无法同时保证一致性(C)和可用性(A),必须三选二。· 故障处理“三板斧”:面对部分失败,系统设计的常规武器是:超时(设等待上限)、重试(可能是幂等的)、熔断(失败太多就开路,直接快速失败)。

2026-01-19 19:15:45 163

原创 【系统分析师】4.4 网络工程

核心在于将模糊的业务需求(如“支撑远程办公”、“保障数据中心互通”)转化为具体、可实施、可验证的网络技术方案。对于系统分析师而言,网络工程已远超“拉网线、配设备”的范畴,它是一项旨在构建可靠、高效、安全、可扩展的网络基础设施,以支撑和驱动业务发展的系统工程。4. 系统集成思维:网络是信息系统的一部分,设计时必须考虑与服务器、存储、应用系统的联动(如负载均衡配置、安全策略联动)。1. 业务需求分析:与决策层、业务部门沟通,明确网络要支撑的核心业务目标(如新建园区、业务上云、保障视频会议质量)。

2026-01-18 23:09:34 330

原创 【系统分析师】4.3 局域网与广域网

对于系统分析师,掌握这两者的核心在于:在设计信息系统时,能根据业务场景(如数据中心内部通信、跨区域分支机构互联、公有云服务访问)正确选择、组合和评估网络技术。掌握局域网与广域网的特性,能帮助你在设计企业网络架构、评估云服务网络方案或规划系统部署位置时,做出符合性能、成本与业务连续性要求的科学决策。提供独占的、固定的带宽,安全性高、质量稳定,但成本最高。· 一张表理清关系:将上述核心对比表格简化,记住几个最关键的对立项:范围、速度、延迟、设备(交换机 vs. 路由器)。WAN是租用的、大范围的。

2026-01-18 08:42:28 261

原创 【系统分析师】4.2 网络体系结构

网络体系结构(如OSI、TCP/IP模型)就是这座城市的总体规划蓝图,它定义了道路(链路)、枢纽(设备)和车辆(数据)应该如何分层、分工与协作。· 网络协议(如TCP、IP、HTTP)则是保证交通顺畅运行的具体交通法规和信号灯系统,规定了数据格式、传输顺序、错误处理等所有通信细节。1. 解构复杂性的工具:能够将一个庞大、复杂的全球互联网通信问题,分解为多个相对独立、易于处理的层次化问题。各层名称 物理层、数据链路层、网络层、传输层、会话层、表示层、应用层 网络接口层、网际层、传输层、应用层。

2026-01-16 19:49:48 328

原创 【系统分析师】4.1 计算机网络基础

All People Seem To Need Data Processing(从上到下:应用、表示、会话、传输、网络、数据链路、物理)。1. 分层模型:必须掌握TCP/IP四层模型(应用、传输、网络、网络接口)及其与OSI七层模型的对应关系,理解每层的核心功能和代表性协议。· 延迟:数据从一端传到另一端的时间(受距离、设备处理、排队影响),对实时应用(视频会议、在线游戏)至关重要。2. 标准框架:全球异构的网络设备能够协同工作,依赖于一套分层的、标准的协议体系(如TCP/IP模型)。

2026-01-15 19:21:15 298

原创 【系统分析师】3.6 操作系统

2. 用户/应用接口提供者:作为用户与硬件之间的“中间人”和“服务生”,它通过系统调用、命令行和图形界面等方式,为上层应用和用户提供了一台功能更强、更易用的虚拟机器,隐藏了硬件的复杂性与差异性。掌握操作系统原理,能让你在分析系统性能瓶颈(如CPU饱和、内存泄露、磁盘IO瓶颈)、设计高并发应用、进行系统级调优时,拥有深刻的洞察力和清晰的解决思路。1. 资源管理者:作为计算机系统的“大管家”,它管理着所有硬件资源(CPU、内存、磁盘、设备),负责高效的分配、调度与回收,解决多个应用程序对资源的竞争问题。

2026-01-15 00:13:27 324 2

原创 【系统分析师】3.5 多处理机系统

解决方案:由硬件实现的缓存一致性协议。· “缓存一致性”联想:记住 MESI 协议,联想为维护缓存关系的四个状态:Modified(我改了)、Exclusive(独享)、Shared(共享)、Invalid(无效)。· 将松散耦合系统想象成一个电话网络,每个分公司(节点)有自己的档案室(内存),协作需要通过打电话发邮件(消息),增加人手容易(扩展性好),但沟通成本高(延迟)。· 将紧密耦合系统想象成一个大办公室,所有员工(CPU)共享一个中央文件柜(内存),交流方便(快),但抢文件时容易冲突(瓶颈)。

2026-01-13 19:20:40 341

原创 【系统分析师】3.4  指令系统

3. CISC vs RISC:掌握二者在设计哲学、指令特点、实现方式及应用领域的对比,这是系统分析师理解不同平台(如X86服务器与ARM手机)差异的基石。广泛用于转移指令(如循环、分支)。4. 性能关联:指令系统的设计直接影响CPI(执行一条指令所需时钟周期数)和IPC(每时钟周期执行指令数),是芯片级性能分析的起点。可能包含源操作数地址、目的操作数地址,甚至下一条指令的地址。2. 寻址方式:理解立即、直接、间接、寄存器、变址/基址/相对这几种核心寻址方式的原理与适用场景,是分析程序底层行为的关键。

2026-01-12 21:11:01 351

原创 【系统分析师】3.3 输入输出系统

缺点:硬件成本增加。理解I/O系统的核心在于认识并解决其面临的根本矛盾:高速的CPU与低速的、多样化的外部设备之间的速度与形式不匹配问题。· DMA核心思想:记住三个字母的扩展含义——Direct(直接), Memory(存储器), Access(访问)。掌握输入输出系统,能让你在设计系统架构时,不仅关注计算和存储,更能科学地评估和规划数据流动的“出入口”,从而构建出平衡、高效、可靠的完整系统。· 解决方案:引入I/O模块(或接口、控制器)作为专用协处理器,负责与设备对接,并为CPU提供标准、简化的接口。

2026-01-11 19:23:51 415

原创 【系统分析师】3.2 存储器系统

为了解决这个矛盾,现代计算机采用了 “存储器层次结构” 的策略,其核心思想是:用少量昂贵的高速存储器作为大量低速廉价存储器的缓存,让CPU在大部分时间能访问到高速部件,从而从整体上逼近高速存储器的速度,同时拥有大容量和可接受的成本。· 层次结构口诀:“寄一(L1)二(L2)三(L3)主(存)外(存)”,对应寄存器、L1、L2、L3缓存、主存、外存。4. 数据局部性原则:程序应具有良好的时间局部性(同一数据不久将被再次访问)和空间局部性(相邻地址的数据可能被一起访问),这是缓存高效工作的前提。

2026-01-10 22:34:35 268

原创 【系统分析师】3.1 计算机系统概述

冯氏结构五部件口诀:“运控存出入”(运算器、控制器、存储器、输入设备、输出设备)。想象数据被“输入”,在“存储器”中等待,“控制器”下令,“运算器”加工,最后“输出”结果。对于系统分析师而言,理解计算机系统不能停留在“使用工具”的层面,而要深入到“设计与分析对象”的层面。2. 层次性认知:计算机系统呈现出清晰的层次结构,从底层的物理硬件到顶层的用户应用,每一层都为上层提供功能和服务,同时隐藏下层的复杂细节。管理和抽象硬件资源(处理器、内存、设备、文件),为上层提供统一、高效的调用接口(系统调用)。

2026-01-09 23:26:49 380

原创 【系统分析师】2.5 工程伦理

系统分析师工程伦理,是指导你在技术决策、架构设计、项目实施等所有工作中,进行价值判断与行为选择的道德框架。它确保你的工作不仅“正确”(技术上可行),而且“正当”(符合道德与责任)。不断学习,确保技术决策基于充分的知识和审慎的判断,这本身也是重要的伦理要求。当发生冲突时,这是最根本的决策依据。· 核心要求:尊重并保护用户隐私权、知情权、知识产权,确保技术服务的可及性与公平性,警惕技术加剧“数字鸿沟”。· 核心要求:在工程活动中保护生态环境,致力于可持续发展,并认识到工程对社会、文化的广泛影响。

2026-01-08 23:10:01 389

原创 【系统分析师】2.4 数学建模

数学建模是系统分析师将现实世界复杂问题转化为可定义、可量化、可计算、可优化的数学形式,并借此寻求最优解决方案的核心方法论。包括:检查结果是否合理(合理性检验)、用历史数据测试模型预测的准确性(历史数据检验)、分析模型对参数变化的敏感度(敏感性分析)。· 核心任务:运用合适的数学工具或计算软件(如MATLAB、LINGO,或编程实现)对模型进行求解,得到决策变量的最优值或问题的分析结论。· 关键产出:对问题的清晰文字描述,明确优化目标(如成本最小、效率最高)和约束条件(如预算上限、时间期限、性能阈值)。

2026-01-07 23:27:17 1065 2

原创 【系统分析师】2.3 预测与决策

本节的核心,是使分析师的能力从对过去和现状的“描述”与“分析”,跃升到对未来行动的“预见”与“抉择”。掌握本节内容,意味着你能够运用结构化、量化(结合定性)的方法,降低未来的不确定性,并在多个各有优劣的方案中,做出理性、可解释、价值最大化的选择。掌握预测与决策方法,能让你在系统规划、架构选型、项目可行性论证等关键工作中,展现出基于数据和逻辑的、令人信服的专业判断力,这正是高级系统分析师的核心价值所在。· 结构:决策节点(□,代表选择)、机会节点(○,代表风险事件)、树枝(代表方案或结果)、概率枝、收益值。

2026-01-06 21:59:49 461

原创 【系统分析师】2.2 图论应用

问题抽象:如何在连接所有“点”(如城市、网络设备、用户)的前提下,使使用的“线”(如道路、网线、电缆)总成本或总长度最小?它用最抽象的“点”和“线”模型,来刻画万物之间的“关系”与“连接”。1. 抽象第一:能否将实际问题(网络、流程、依赖)正确地抽象为点、边、权值的图模型,是应用图论的首要且最关键的一步。4. 理解“环”的意义:有向图中的“环”通常意味着循环依赖或逻辑矛盾,这是拓扑排序和项目管理中需要检查和避免的。· 问题抽象:在带有“距离”或“代价”的图中,如何找到从起点到终点的累计代价最小的路径?

2026-01-05 22:36:34 382

原创 【系统分析师】2.1 数学统计基础

应用场景:分析系统响应时间的平均水平(均值)、评估用户收入分布的典型值(中位数)、查找最常见的错误类型(众数)。· 应用场景:在故障诊断系统中,根据观察到的系统症状(新证据),更新不同组件故障的概率(从先验概率到后验概率)。1. 量化描述与洞察:从海量、杂乱的系统数据(如用户行为日志、性能指标、业务数据)中提取有意义的特征和模式。3. 假设检验四步口诀:“设假(设假设)、算量(计算统计量)、查P(值)、做决(策)”。· 应用场景:评估服务器负载的波动情况(标准差)、分析订单金额的分布范围(极差)。

2026-01-04 19:42:53 379

原创 【系统分析师】1.3 知识体系

掌握这个知识体系框架,能帮助你在后续庞杂的章节学习中,清晰地定位每一项具体知识(如“数据库设计”或“企业战略”)在整个能力版图中的位置和作用,从而进行有目的、系统性的学习。4. 方法论是灵魂:在庞杂的知识中,系统思维、分析方法和建模语言是组织知识、开展工作的核心工具,比孤立的知识点更重要。· 软件工程核心:软件开发全过程(需求、设计、实现、测试、维护)、软件过程模型(瀑布、敏捷等)、软件质量保证。· 系统架构与设计:各种架构风格(分层、微服务、事件驱动等)、设计模式、模块化设计原则。

2026-01-03 20:57:34 363

原创 【系统分析师】1.2 系统分析师

3. “π型人才”模型:想象希腊字母“π”,一横代表广博的业务与通用知识,两竖分别代表扎实的IT技术功底和强大的分析沟通软技能。1. 核心价值是“桥梁”与“翻译”:系统分析师的核心价值在于弥合业务与技术的鸿沟,将模糊的业务诉求转化为清晰的技术规格。· 沟通者与翻译官:作为业务部门(说“业务语言”)与技术团队(说“技术语言”)之间的桥梁,确保信息无损传递、理解一致。1. 一句话定义记忆法:“系统分析师是业务与技术之间的翻译官,是复杂问题的定义者和系统解决方案的设计师。· 需求工程:这是重中之重。

2026-01-02 23:11:14 411

原创 【系统分析师】1.1 信息与信息系统

关键转化过程:数据 -> (经过处理、赋予背景) -> 信息 -> (经过学习、吸收) -> 知识 -> (经过提炼、洞察) -> 智慧。3. 系统分析师视角:你不是在建造一个由硬件和软件堆砌的“机器”,而是在设计一个由人主导、遵循规程、利用技术来处理数据、生成信息以解决组织问题的社会技术系统。战略性、预见性、本质洞察。2. 信息系统定义:信息系统是由人、规程、数据、软件、硬件五大部分组成的,旨在为组织提供信息支持的综合体。信息系统是为实现信息的收集、传输、加工、存储、维护和使用而组成的人机协同系统。

2026-01-01 21:25:43 572

原创 【系统分析师】目录

根据清华大学出版社官网及多个图书销售平台的信息,2024年最新出版的《系统分析师教程(第2版)》共分三篇、22章,依据最新的考试大纲编写,内容非常全面。· 大型电商平台:在当当、文轩等网站搜索“系统分析师教程 第2版”即可找到。涵盖范围、进度、成本、质量、人力、风险、沟通、配置、文档等十大知识领域。7.2 软件开发方法与模型(传统、敏捷、统一过程等)第10章 系统规划与分析 (依据教程三篇结构推断)5.3 数据库控制功能(并发控制、安全、备份等)6.4 企业信息系统(CRM、SCM、BI等)

2025-12-31 20:51:35 268

原创 【系统分析师】认证介绍

它不仅仅是职业资格证明,更是获得国家认可的高级职称(高级工程师)的重要途径,被誉为中国IT行业“金字塔顶端”的认证之一。根据常考主题(如架构设计、需求管理、系统迁移等),结合自身项目经验,准备2-3篇论文素材并反复修改练习。· 扩展学习:结合自身薄弱环节,补充学习软件架构设计、需求工程、新技术(如微服务、大数据)等领域的专门知识。如果你想进一步了解备考资料的选择,或者想聊聊如何结合你的个人经验准备论文,我可以提供更具体的建议。· 新兴系统分析与设计:Web应用、微服务、大数据处理、移动应用、嵌入式系统等。

2025-12-30 22:08:08 464

原创 【TS6】Cherry Studio项目介绍

Cherry Studio 主要使用 TypeScript/JavaScript 技术栈进行开发,其架构是为桌面端设计的。下面这个表格总结了其核心的目录和文件,可以帮助你快速建立整体认知。

2025-09-27 18:07:39 705

原创 【TS5】Electron与Flutter

Flutter支持全平台统一开发(移动/桌面/Web),UI渲染完全独立于操作系统;Electron生态成熟(如VS Code、Slack),前端工具链无缝衔接;Flutter社区插件丰富但语言学习成本较高,适合追求极致开发效率的团队。Flutter应用体积通常小于Electron(因不含Chromium),性能要求高(如60fps动画、热重载需求) ‌。‌ 优先选Electron‌。优先选Flutter‌。‌ 跨平台一致性‌。‌ 性能与体积‌。‌ 生态与工具‌。

2025-09-23 23:21:13 651

原创 【TS4】简单的typescript练手项目

在开始一个简单的 TypeScript 练手项目之前,确保你已经安装了 Node.js 和 TypeScript。你可以通过运行和来检查它们是否已经安装在你的系统上。如果没有安装,你可以从下载并安装 Node.js,因为 TypeScript 是随 Node.js 一起安装的。

2025-09-22 23:24:29 398

原创 【TS3】搭建本地开发环境

参考: https://blog.csdn.net/qq_34414916/article/details/85156499。参考:https://blog.csdn.net/qq_43802768/article/details/124356677。‌华为云镜像‌(https://repo.huaweicloud.com/repository/npm/)‌腾讯云镜像‌(https://mirrors.cloud.tencent.com/npm/)

2025-09-21 21:42:50 833

原创 【TS2】TypeScript知识体系

分层展开的TypeScript知识体系的系统梳理。

2025-09-20 17:06:52 391

原创 【TS1】 TypeScript 学习路线

1. 利用你的Java优势:许多OOP概念直接迁移到TypeScript,但注意JavaScript原型链与Java类的差异。2. 理解类型灵活性:TypeScript的类型系统比Java更灵活,支持结构类型而非名义类型。3. 拥抱函数式编程:TypeScript对函数式编程的支持比Java更好,充分利用这一点。· TypeScript Playground - 实时测试TypeScript代码。· TypeScript的类型系统(与Java类型系统对比)· TypeScript官方文档 - 必读资源。

2025-09-18 06:57:57 431

原创 自信的深度思考:DeepConf如何让AI推理既聪明又高效?

想象一下,你要求AI解决一道复杂的数学证明题。· 打破“效率-精度”的边界:它证明了通过精巧的设计,我们完全可以打破传统上“要精度就得牺牲效率”的魔咒,为AI在复杂任务上的大规模、低成本应用铺平了道路。那么,有没有一种方法,能让AI像一位严谨的数学家,在推理时能够自我审视,及时摒弃不可靠的思路,专注于高置信度的路径,从而同时实现准确性与效率的双重突破呢?· 可解释性与可靠性:通过关注模型的置信度,我们得以一窥AI的“思考过程”,增强了我们对AI决策的理解和信任,这对于金融、法律、医疗等高风险领域至关重要。

2025-09-05 06:45:14 304

原创 突破极限:Native Sparse Attention 如何释放AI新潜能

今天,我要介绍的这项由DeepSeek-AI、北京大学和华盛顿大学联合提出的突破性技术——Native Sparse Attention (NSA,原生稀疏注意力),正是这把斩断“计算锁链”的利剑。传统的AI模型会怎么做?通过精心设计的稀疏模式,NSA能够确保模型捕捉到长序列中几乎所有关键的依赖关系(如语言中的远程指代、图像中的全局结构),从而在性能上媲美甚至超越传统的稠密注意力。那么,有没有一种方法,能让我们像聪明的读者一样,学会“略读”和“跳读”,快速抓住重点,而不失对整体内容的理解呢?

2025-09-04 06:39:08 382

原创 让AI学会“温故而知新”:基于最近邻方法的智能新范式

在当今所有AI都在追求更大、更复杂的神经网络时,一股新的思潮正在悄然兴起:为什么不让我们AI系统像一个博闻强识的智者一样,通过“回忆”和“类比”过去的知识来解决新问题呢?它让我们看到,人工智能的未来,或许不是一味地追求更大的模型,而是走向一种“模型(大脑) + 数据库(记忆)” 的更优雅、更高效、也更接近人类思维的架构。它告诉我们,智能不仅在于抽象概括的能力,也在于精准回忆和灵活应用的经验。当AI既拥有了深度神经网络的“悟性”,又拥有了最近邻方法的“记性”时,我们才能真正迈向一个更可靠、更可信的智能时代。

2025-09-03 06:31:30 382

原创 迈向科学灵感的工程化:Spacer系统介绍

Spacer并非要创造一个完全自主的科学发现机器,其更现实和美好的愿景,是打造一种“人机共生”的新范式——科学家提供深邃的领域知识、批判性思维和审美判断,Spacer提供无穷的联想能力、不知疲倦的搜索能力和跨领域的知识广度。它启示我们,人工智能最深远的贡献,或许不是替代人类,而是通过扩展我们的认知边界,帮助我们成为更好的思想者。朋友们,Spacer的研究向我们展示了一个激动人心的未来:科学灵感,这种人类智慧最璀璨的火花,或许不再仅仅是偶然的馈赠,而是可以通过工程化方法不断尝试、逼近和激发的过程。

2025-09-02 06:48:15 316

原创 迈向智能协作新纪元:MoFedNet与语义链接的启示

而语义链接则会在其中建立丰富的上下文:它可能标注这个结节的大小、位置、密度等特征(这些是语义),并指明这些特征与“早期肺癌风险评估”模型的需求之间的关联(这是链接)。想象一下这样一个场景:一家大型医院,拥有无数个专门的AI模型——有的擅长在X光片上发现病灶,有的精通解读病理报告,有的专长于分析基因序列,还有的能预测药物反应。它远不止是简单的数据传递或函数调用,而是为模型之间的交互注入深刻的语义理解。朋友们,AI的未来,绝不会是几个“全能巨人”的独舞,而必然是由无数“专业精英”模型组成的、和谐交响的乐章。

2025-09-01 06:44:27 434

原创 揭秘数据分组的智慧:Self-Constrained Clustering Ensemble 介绍

2. 对聚类结果的“信心”进行提取和传播:另一种思路是,首先从多个基聚类中提取出那些高置信度、高一致性的一致信息(例如,多个基聚类都一致同意应该分在同一组的样本对),形成一个可靠的“核心”。回顾一下,自约束聚类集成的先进性,不在于它用了多复杂的数学模型,而在于它引入了一种更符合学习规律的“智慧”:先易后难,重点突出,自我修正。自约束聚类集成的研究方兴未艾,它正不断吸收自监督学习、图神经网络等前沿领域的营养,未来有望在更复杂的数据场景,如生物信息学、社交网络分析、异常检测等领域发挥更大的价值。

2025-08-31 11:22:21 387

原创 揭秘表格推理的“思维革命”:RoT模型介绍

我们可以看到模型在每一行生成的“思考小结”,就像检查数学家的草稿纸一样,我们知道它的答案是怎么得来的,这大大增加了我们对AI决策的信任度。它会将这个新生成的“思考小结”与之前所有行的思考结果进行融合和汇总,更新一个全局的“思维状态”。回顾一下,RoT的革命性并不在于它用了多复杂的网络结构,而在于它提出了一种反直觉却极其有效的新范式:在一个人工智能越来越追求“快”和“大”的时代,RoT告诉我们,“慢下来”、“一步一步来”这种最朴素的智慧,在解决复杂结构化推理问题时,拥有着无可替代的价值。

2025-08-30 17:23:54 380

原创 揭秘学术界的“AI侦探”:Academ AI Database

这不是一个普通的数据库,而是一位学术界的“AI侦探”,它正在帮助我们维护学术研究的真实性与完整性。像Academ AI Database这样的工具,不仅仅是一个“监控系统”,更是一面镜子,反射出学术研究与新兴技术关系中的伦理挑战。作为学术社区的一员,我们每个人都有责任维护研究的真实性和透明度,确保AI成为辅助我们探索知识的工具,而不是替代我们思考的捷径。随着AI技术的不断发展,这个“AI侦探”也需要不断进化,学习新的识别技巧,以应对更隐蔽的AI使用方式。这是一个持续的过程,需要整个学术社区的共同努力。

2025-08-29 07:53:49 289

原创 揭秘AI的“隐藏指令”:零空间解缠与红队测试

它为我们提供了一副“透视镜”,让我们能够窥见AI模型深层的运作机制,从而更有信心地引导它、塑造它,确保它最终能成为服务人类、增进社会福祉的可靠伙伴。顾名思义,“红队”就是扮演攻击者的角色,千方百计地“忽悠”、“诱导”甚至“攻击”我们自己的AI模型,试图找出它的弱点,触发它的不当言行。每一个词语、每一个句子,进入这个迷宫后,都会被转换成一个由无数数字组成的“向量”,也就是一个空间中的点。换句话说,我们不再需要寻找那根“邪恶的针”,而是直接制造了一块“强大的磁铁”,把所有藏在暗处的“针”全部吸了出来!

2025-08-28 07:43:40 368

原创 从混沌到清晰:探索扩散模型的魔法世界

于是,它朝着“清晰”的方向,小心翼翼地迈出了一小步,得到了一张“稍微不那么噪声”的图片。今天我们要探讨的“去噪扩散概率模型”,或者说“扩散模型”,正是教会人工智能这种“从混沌中创造清晰”的思维方式的突破性技术。重复这个“去噪”步骤几百上千次之后,最初的纯随机噪声消失了,取而代之的是一张全新的、完全由模型“想象”和“计算”出来的、高度清晰的猫咪图片。这就好比一位修复大师,为了学习如何修复一件破碎的古董,他首先需要亲手、并系统地打碎成千上万件类似的器物,同时详细记录下每一次敲击的力度、角度和产生的裂纹形状。

2025-08-27 06:45:51 394

原创 通向通用智能的飞跃:GPT-3与“大语言模型”时代的开启

2020年,OpenAI发布了名为GPT-3的模型,它无需针对特定任务进行繁琐的重新训练,仅需寥寥几个例子,就能翻译语言、写小说、编代码,甚至进行哲学辩论。它揭示了一个简单而强大的真理:当模型规模达到前所未有的程度时,量变将引发质变,一种全新的、通用的智能形式随之涌现。他的能力并非来自那几幅画,而是来自他毕生的阅读和积累,那几幅画只是“激活”了他已有的知识。我们不禁要问:是否存在一种方式,能像教育一个孩子那样,先让AI“博览群书”,形成对世界的基本认知,然后只需简单点拨,它就能快速学会任何新任务?

2025-08-26 06:39:41 473

原创 语言模型的无限潜能:GPT-2与无监督多任务学习的革命

这项研究提出的GPT-2模型,不仅颠覆了我们对语言模型的传统认知,更开创了无监督多任务学习的新范式。这表明GPT-2显著提升了对长文本依赖关系的理解能力。GPT-2的突破在于它向我们展示了一条不同的路径:一个在多样化数据上训练的大型语言模型,无需任何显式监督,就能学会执行多种任务。尽管其性能尚未完全达到监督学习系统的水平,但这一能力完全是通过无监督学习自发获得的,证明了语言模型内在的任务理解能力。这条道路的核心是信任大规模学习的内在智慧——通过提供足够的数据和计算资源,模型能够自动发现世界中的规律和知识。

2025-08-25 06:52:08 436

原创 解码神经网络中的“幸运儿”:彩票假设揭秘

这项由MIT研究者提出的工作,彻底改变了我们对神经网络训练的理解,它告诉我们:在庞大的神经网络中,存在着一些“幸运儿”子网络,它们在初始化时就注定了成功!彩票假设的核心观点就是这样:一个随机初始化的密集神经网络中,存在一个稀疏的子网络(即“中奖彩票”),这个子网络在保持其初始权重的情况下,经过独立训练,可以达到与原始网络相当的测试准确率,并且训练时间不会更长。但彩票假设表明,有效的结构可能早在初始化时就已“编码”在网络中,训练过程更像是“发现”和“优化”这些结构,而非从头学习。),得到子网络f(x;

2025-08-23 06:41:42 317

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除