自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(37)
  • 收藏
  • 关注

原创 随机森林:群体智慧的胜利

**随机采样:** 从原始数据集中**有放回地**随机抽取 `n` 个样本(一份“训练粮草”),生成一个**自助样本集(Bootstrap Sample)**。* 每棵树在分裂节点时,**不再考虑所有特征**,而是只从**随机选取的 `m` 个特征(`m << 总特征数 M`)** 中挑选最优分裂点。* **森林之盾:** Bagging + 特征随机性 = **极大提升模型多样性**。* **独立训练:** **每棵树只用自己抽到的那份样本集独立训练**,互不干扰。

2025-06-13 06:31:39 155

原创 决策树:数据世界的“智能问卷”

**选择标准:** 遍历所有特征和所有可能的分裂点(对于连续特征,如年龄,尝试不同阈值如30、40、50...),计算每种分裂带来的**不纯度减少量(信息增益 / 基尼减少量)或MSE减少量**。它架起了**数据世界**与**可操作知识**之间的坚实桥梁。* **思想:** 训练一棵大树,然后**自底向上**检查:若砍掉某个子树(用其父节点代替),模型在**验证集**上表现不降反升或持平,则修剪!* **叶节点(终结点):** 树的末端,不再提问,给出**最终决策**(如“批准贷款”或“拒绝贷款”;

2025-06-12 06:29:53 233

原创 支持向量机:在混沌中划出最强边界

2. **锁定关键点:** 真正决定边界位置的不是所有点,而是位于间隔边界上 (`wᵀx + b = ±1`) 的少数点——这些点就是**支持向量 (Support Vectors)**!1. **思想:** 将数据 `x` **隐式映射**到一个**更高维(甚至无穷维)的特征空间**。3. **优化目标:** 最大化间隔 ⟺ 最小化 `||w||²` (向量 `w` 的模长平方)。1. **定义间隔:** 间隔是决策边界(`wᵀx + b = 0`)到**最近**的**两类**数据点的距离之和。

2025-06-11 06:29:50 320

原创 逻辑回归:给不确定性划界的分类大师

解决方案:引入**特征交叉项**或**多项式特征**(升维),或使用**核技巧**(但不如SVM直接)。* **数值大小:** 在**其他特征不变**的情况下,`Xᵢ` 变化一个单位,**对数几率 (Log Odds)** 的变化量。* 寻找一组参数 `β`,使得**观测到的训练数据**(已知哪些样本是1类,哪些是0类)**出现的可能性(似然)最大**。* **符号 (+/-):** 指示特征 `Xᵢ` 与目标概率 `P(Y=1)` 是**正相关**还是**负相关**。

2025-06-10 06:31:58 370

原创 线性回归:数据世界的“量尺”

**含义:** 模型(这条直线)**解释**了 `Y` 的总变化中**多大的比例**。公式的核心是 `X` 和 `Y` 的**协方差**与 `X` 的**方差**。2. **预测未知:** 一旦有了这条“最佳直线”,对于**新的** `X` 值(比如一个新设计的 14 英寸披萨),我们就可以代入公式,**预测**出它可能对应的 `Y` 值(预测售价)。* **资产定价:** 著名的 **CAPM模型** 就用个股收益率对市场收益率的线性回归,计算 **β系数**(衡量个股相对于市场的风险/波动性)。

2025-06-09 06:34:28 238

原创 牛顿法:在优化世界“精准跳跃”

**牛顿法看得更深:** 它还关心地形的**弯曲程度(曲率)**!而是利用**每次迭代的梯度信息 (`∇f(xₖ)` 和 `∇f(xₖ₊₁)`)** 和 **`xₖ`, `xₖ₊₁` 的变化**,巧妙地构建一个对真实海森矩阵逆 `H⁻¹` 的**近似矩阵 `Bₖ`**。** 重复此过程,快速逼近真实谷底。* **速度与代价的权衡:** 牛顿法提供**惊人的收敛速度**(二阶),但以**高昂的计算/存储成本**为代价。* **二阶思维:** 牛顿法的灵魂在于**利用二阶导数(曲率)信息**。

2025-06-08 06:21:29 226

原创 梯度下降:优化世界的“蒙眼登山术”

1. **感知坡度(计算梯度):** 站在当前位置(参数点 `x_k`),感受周围地形的**最陡峭下坡方向**。* **问题:** 在非凸函数(地形多坑洼)中,梯度下降可能掉进一个**局部最低点**(小坑),而非全局最低点(大峡谷)。* **随机梯度下降 (SGD):** **每次迭代只随机抽取一个样本计算梯度并更新参数。* **核心任务:** 调整模型参数 `w`(如神经网络的权重和偏置),使**损失函数 `J(w)`**(衡量模型预测 `ŷ` 与真实值 `y` 差距)**最小化**。

2025-06-07 07:03:19 274

原创 凸优化:驯服复杂世界的“山谷寻宝术”

**思想:** 不仅看梯度(坡度),还看**二阶导数(曲率)**(海森矩阵 H(x))。* **思想:** 站在山坡上,环顾四周,找到**最陡峭的下坡方向**(负梯度方向 -∇f(x)),朝那个方向迈一步(步长由学习率 η 控制):`xₖ₊₁ = xₖ - η ∇f(xₖ)`。* **深度学习的基础层:** 虽然深度神经网络整体是非凸的,但其核心构建模块(如带凸损失函数的线性层、正则项)的优化都大量借鉴和使用了凸优化的思想和算法(如梯度下降的变种)。** 你再也不用担心掉进“陷阱山谷”。

2025-06-06 06:35:16 718

原创 泰勒展开:用多项式雕刻万物

**牛顿法求根/优化:** 为了寻找 f(x)=0 的根或 f(x) 的极值点,利用 f(x) 在当前猜测点 xₖ 处的泰勒展开(通常取到二阶项),构造一个更简单的二次函数逼近原函数,求出这个二次函数的根或极值点作为下一个更好的猜测点 xₖ₊₁。* **单摆的奥秘:** 单摆运动方程本是非线性的,难以精确求解。* **收敛性:** 对于某些函数(如 sinx, cosx, eˣ)和某些区间,当 n → ∞ 时,Rₙ(x) → 0,泰勒级数 `P_∞(x)` 精确等于 f(x)!

2025-06-05 06:38:36 1101

原创 偏导数:解锁多维世界的秘密钥匙

* 这种身处多变量环境中的变化奥秘,正是**偏导数**所要揭示的。* **下山(优化)的向导:** 梯度负方向 (-∇f) 指向函数**下降最快**的方向。* **梯度下降:** 计算损失函数 L 关于**每一个参数**的偏导数 ∂L/∂wᵢ、∂L/∂b。它反映**仅向北走**时的高度变化率。* **混合偏导数的相等性:** 在大多数常见的“行为良好”的连续函数中,混合偏导数的求导顺序可以交换:**fₓᵧ = fᵧₓ**。* **核心意义:** 梯度指向函数在**该点上升最快**的方向!

2025-06-04 06:36:09 306

原创 积分的魅力:丈量世界的曲线,累计算变的伟力

**基本函数:** ∫ eˣ dx = eˣ + C, ∫ (1/x) dx = ln|x| + C, ∫ sin(x) dx = -cos(x) + C, ∫ cos(x) dx = sin(x) + C。* **换元积分法:** 像链式法则的逆运算,用于复合函数。* **弧长:** 计算**弯曲路径**的长度(如过山车轨道、电缆悬垂线),公式为 ∫ √(1 + (dy/dx)²) dx。* **面积:** 轻松计算**任何不规则曲线**围成的平面区域面积(比如湖泊、零件截面)。

2025-06-03 06:35:34 319

原创 导数:捕捉瞬间变化的超级力量

5. **商:** `[f(x)/g(x)]' = [f'(x)*g(x) - f(x)*g'(x)] / [g(x)]²` (上导下不导 减 上不导下导,再除以下平方)4. **乘积:** `[f(x)*g(x)]' = f'(x)*g(x) + f(x)*g'(x)` (前导后不导 + 前不导后导)* **寻找最优解:** 导数能帮我们找到函数的**最大值和最小值**点(关键点处导数为零或不存在)。2. **幂函数 (xⁿ):** 它的导数很简单:**n \* x^(n-1)**。

2025-06-02 07:21:55 320

原创 推断统计:从一杯奶茶看穿世界

56%-64%就是**置信区间**,区间越窄,我们的估计越精准。这个0.05就是**显著性水平(α)**,是我们愿意承担的“冤枉好人”(错误拒绝真原假设)的风险上限。**参数估计**告诉你:样本结果(60%)是总体真值的一个**点估计**,但更靠谱的是给出一个**范围**——**置信区间**。*概率是语言**:无论是置信区间(95%信心)还是假设检验(P值),都在用**概率**说话。*计算P值**:P值是在H0成立(新品真不比老款好)的前提下,观察到当前样本结果(60%)或更极端结果的概率。

2025-06-01 07:54:08 408

原创 数据语言:描述统计如何揭开世界的真相

—**请暂停决策!** 这个看似简单的选择背后,正隐藏着描述统计的核心命题:**平均数会撒谎**。- **五要素**:最小值、Q1(25%分位)、中位数、Q3(75%分位)、最大值。- 小明公司:CEO月薪50万,9名员工月薪1万 → **平均2万**- 小红公司:10名员工月薪1.4-1.6万 → **平均1.5万**因为真正的数据素养,始于读懂描述统计这门**世界的通用语言**。- 当看到“平均薪资增长8%”,请追问**中位数变化**- **解决方案**:用统计量将海量数据压缩为信息精华。

2025-05-31 07:40:52 605

原创 贝叶斯定理如何重塑人类认知

多数人回答超过90%,但**正确答案仅9%**!- **初始信念** → **获取证据** → **更新信念** → **成为新先验**> **P(障碍物|摄像头模糊影像) = P(障碍物) × P(影像|障碍物)**> **P(信念|证据) = P(信念) × P(证据|信念) / P(证据)**- **天气预报**不再是“是否下雨”,而是“60%概率降雨”的动态更新。- **科学发展**不再是“绝对真理”,而是“当前证据下的最佳解释”3. **后验概率**:获得证据后的更新信念(真实概率9%)

2025-05-30 06:39:28 850

原创 数据宇宙的解剖刀:奇异值分解的魔力

如何快速找到核心部件,重建有序结构?今天我要介绍的**奇异值分解(SVD)**,正是这样一把切割数据宇宙的“解剖刀”。正如爱因斯坦所言:**“不能改变熵,但可以重组信息”**。2. **噪声免疫**:真实世界90%的数据是干扰,SVD教我们专注信号。- 用SVD保留前50个奇异值 → 数据量降至**原始尺寸的5%**- **用户-影片评分矩阵 → SVD分解 → 预测未评分项**- 词向量矩阵经SVD得到**潜在语义索引(LSI)**3. **全息原理**:每个数据碎片都包含整体信息的投影。

2025-05-29 06:37:13 237

原创 特征值与特征向量

在量子计算领域,量子比特的状态演化完全由特征值谱决定,这些神秘的数值直接对应着微观世界的可观测物理量。更令人惊叹的是,最新研究表明人脑神经网络的记忆机制,竟与矩阵特征值的分布规律存在惊人的相似性。1846年海王星的发现故事众所周知,但鲜为人知的是,数学家通过特征值扰动理论,才最终锁定了这颗行星的精确轨道。朋友们,当我们凝视特征方程时,看到的不仅是符号与公式的舞蹈,更是人类理性之光的永恒闪耀。让我们保持这份对未知的好奇与敬畏,因为下一个改变世界的特征值,或许就藏在您此刻的思考中。

2025-05-28 07:16:34 163

原创 矩阵运算:打开数字世界的钥匙

在人工智能领域,神经网络本质是矩阵的层层变换:400万参数的ChatGPT,每层都在进行矩阵运算;甚至当自动驾驶汽车识别路况时——这些神奇的技术背后,都藏着一个共同的数学工具:矩阵运算。这种"行乘列"的规则,完美解决了多对多的复杂计算问题。当我们下次滑动手机屏幕时,或许能会心一笑:这丝滑的触控背后,正有无数矩阵在翩翩起舞。矩阵加减就像超市补货:只有相同规格的货架(同型矩阵)才能直接操作,每个单元格独立运算。游戏角色的每个动作,VR设备的每个视角切换,都是这种变换的实时演绎。**逆矩阵:数学的时光机**

2025-05-27 06:32:03 316

原创 机器学习常用算法:从“算命先生”到“未来先知”的魔法工具箱

今天我们要拆解一组藏在抖音推荐、自动驾驶甚至相亲APP里的“数字巫师”——**机器学习算法**!它们不是枯燥的数学公式,而是现实世界的“预言水晶球”。5分钟带你认识6大核心算法,看透AI如何用代码“算计”你的生活!“现在,请对着屏幕笑一下——人脸识别算法正在给你的‘快乐指数’打分!:“人生没有存档,但决策树可以帮你算出最优解——只要你能忍受它的‘人工智障’时刻!:“你在算法眼里,可能和广场舞大妈是同一类人——如果你们都爱看《甄嬛传》!- 王者荣耀匹配系统,用决策树评估你是否是“猪队友”

2025-05-26 06:47:29 403

原创 机器学习:从数据炼金术到未来预言  

9年后,亚瑟·塞缪尔写出首个自学程序——**西洋跳棋AI**,它通过反复对弈提升胜率,第一次让机器有了“进化”能力!真正的革命在2006年到来——杰弗里·辛顿提出**深度学习**,神经网络层数从3层暴涨到152层(ResNet),AI突然学会从像素中认猫,从声波里辨人!:“创造力、共情力、批判性思维——这些AI尚未攻克的堡垒,将是我们最后的诺亚方舟!- 1967年,第一个最近邻算法诞生,用距离公式给数据分类,原理堪比“物以类聚”:2016年,李世石用“神之一手”险胜,却成了人类在围棋领域最后的绝唱。

2025-05-25 17:20:11 223

原创 Linux系统:从地下室代码到统治数字世界

从王者荣耀的战斗结算,到SpaceX的火箭回收——Linux就像数字世界的氧气,看不见却无处不在。Linus的代码遇上了理查德·斯托曼的GNU计划——一个缺内核,一个缺工具链,两者结合就像汉堡找到了肉饼!- Arch系:极客的炫技场,“KISS原则”(Keep It Simple, Stupid)信徒的圣地。金句:“Linux不是技术奇迹,而是人类协作的奇迹——全球10万+开发者免费打工,只因信仰开源!“现在,请举起你的手机——如果它装着安卓系统,你已经在为Linux的30亿用户量+1!

2025-05-25 08:11:23 308

原创 Python演化史:从圣诞礼物到改变世界

今天我们要解剖一只吞噬了全球程序员脑细胞的“蟒蛇”——**Python**!1989年,荷兰程序员**Guido van Rossum**被ABC语言的失败刺痛,在圣诞假期怒敲代码,誓要创造“人类友好型”编程语言。- **开箱即用**:`print("Hello World")` 秒杀C语言的`printf`地狱。1. **列表推导式**:`[x*2 for x in range(10)]` 让代码比英语更易懂。记住:在这个时代,**不会Python的人,才是真正的“数字难民”**!

2025-05-24 12:55:06 284

原创 微积分:从瞬时速度到宇宙真理的疯狂引擎

*金句**:“没有微积分,人类就像没有码表的赛车手——永远不知道极限在哪!- **新冠传播模型**:用导数预测感染人数增速,各国防疫政策背后都是微分方程。- **AI数学家**:GPT-10自动证明未解积分方程,菲尔兹奖得主失业。- **投资**:复利方程`A=P(1+r)^t`是财富自由的核武器。**专家警告**:“未来不懂微积分的人,可能连智能马桶都不会修!- **碳中和战略**:积分计算全球碳排放总量,倒推各国减排指标。- **量子导数**:重新定义时空曲率,星际旅行时间缩短90%

2025-05-23 07:12:29 320

原创 概率统计:从赌徒秘籍到AI预言术  

今天我们要拆解一门“预测未来”的黑科技——**概率统计**!它能让赌场稳赚不赔,让AI预判你的购物车,甚至让保险公司算准你的寿命。“现在,请在弹幕输入你今天的起床时间——然后我们可以用中心极限定理,算出当代年轻人的集体生物钟!- 艾滋病检测准确率99%,若检测阳性,真实患病概率竟不到50%!终极恐惧:“当AI算准你99.99%会点外卖时,你所谓的‘选择’只是概率的傀儡?扎心真相:“你和爱因斯坦的智商差距,可能只是正态分布的两个标准差!1713年,伯努利证明:当实验次数趋近无穷,频率必然逼近概率。

2025-05-23 07:11:33 244

原创 线性代数:从魔法方程式到改变世界的隐形引擎 

它不仅是数学家的游戏,更是现代科技的“万能钥匙”。- 这是矩阵的高维升级版,AI神经网络的权重都是张量,比如ResNet-50有2300万个参数张量!- 矩阵诞生:1848年,凯莱定义矩阵乘法规则,数学家惊呼:“这不符合交换律!17世纪,莱布尼茨在草稿纸上画下第一个行列式,人类突然发现:**数字可以像乐高一样拼接**!“下次当你用手机拍照时,请记住——你不是在按快门,而是在解一个600万维的线性方程组!- 你的手机屏幕是2D向量空间,VR眼镜是3D,而GPT-4活在1024维的向量宇宙。

2025-05-23 07:10:47 225

原创 学习大模型路线图:从菜鸟到造物主的通关秘籍  

用PyTorch复现ResNet(理解残差连接) - 拆解BERT的注意力机制(可视化Attention矩阵)血泪教训:“第一次跑BERT时,我的显卡起火了——后来发现是忘记关`torch.cuda.amp`!灵魂暴击:“当你发现刚训好的模型已被开源社区超越时,恭喜你——正式踏入AI修罗场!现在,轮到你来定义未来了!- 线性代数:矩阵是AI的乐高积木(重点:矩阵乘法、特征值)- 概率统计:让AI学会“赌概率”(贝叶斯定理、正态分布)- 模型量化:把“大象”塞进“冰箱”(FP32→INT8)

2025-05-22 07:21:53 1101

原创 大模型AI:从数字神经元到未来合伙人

它不仅是代码的狂欢,更是人类智慧的“数字镜像”。- 阿里云、百度疯狂降价,大模型API价格被打到“白菜价”——1块钱处理600张图片,比奶茶还便宜。第二幕:应用革命——AI正在“吃掉”所有行业 当大模型撞上实体经济,爆发的不是火花,而是核聚变!- 字节跳动狂砸1600亿追赶,从“掉队者”变身“AGI赌徒”,挖角大战堪比硅谷谍战。- 2022年ChatGPT破圈:1750亿参数突然“开窍”,全网惊呼“AI成精”。- 文化:北信源“爱传”APP秒破100种语言壁垒,中外游客靠AI实现“脑波对话”。

2025-05-22 07:16:50 236

原创 语言与人工智能:从代码符号到思维交响 

LISP的基因编码:1958年,麦卡锡发明LISP语言,首创“代码即数据”理念。它的“自注意力机制”像人脑突触,能捕捉“巴黎是法国首都”中“巴黎”与“法国”的隐秘关联。它像语言黑洞,吞噬了45TB的互联网文本,连程序员都震惊:“给它莎士比亚,它还你十四行诗;- ELIZA的伪装术:1966年,MIT的魏岑鲍姆开发出首个聊天机器人ELIZA,用简单的关键词匹配模仿心理医生。” 这被称为“图灵测试”,点燃了AI的语言革命。- 无法处理“常识”——机器知道“鸟会飞”,却不懂“企鹅是鸟但不会飞”

2025-05-22 07:13:20 310

原创 数学语言演化史:从结绳记事到宇宙密码

**韦达的野心**:16世纪,法国数学家韦达受战场密码启发,用元音字母代表未知数,辅音字母表示已知数,喊出“让代数成为类的算术!- **AI的数学基因**:GPT-4靠矩阵运算生成诗歌,AlphaFold用微分方程破解蛋白质——AI的母语,正是数学。- **笛卡尔的坐标系**:1637年,笛卡尔用x、y、z为变量命名,将几何与代数熔于一炉,“我画故我在”- **汉语的数学突围**:李善兰创造“代数”“微分”等术语,让中文搭上数学国际列车。**灵魂提问**:“如果符号未统一,今天科学家吵架得带翻译吗。

2025-05-21 13:19:52 393

原创 汉语言演化史:从远古回声到现代交响

2019年,复旦大学团队通过遗传学与语言学交叉研究,首次证实:汉语的“基因”诞生于此,并随着先民迁徙分化出藏语、缅甸语等“姐妹语言”。语言如河流,奔涌不息。比如“关关雎鸠”的“关”,古音接近“kroon”,与现代读音大相径庭。:方言是文明的“活化石”,需用数字技术保存,但“保护不是圈养,而是记录其自然生长”。:“下次听到方言时,不妨想想——你正在聆听的,可能是先秦的回声,或是唐宋的私语。:30年内,上海话分化出“老派”与“最新派”,年轻人说的已大不同。:如“各”字古音为“klak”,后来简化为“ge”。

2025-05-21 13:17:32 387

原创 人类语言发展史:从远古呢喃到全球对话

30万年前,北京人的头骨化石上出现了不对称的压痕——这是人类语言脑区最早的证据。未来的语言或许会融合,但每一种声音都值得被听见——因为差异,才是世界的底色。光靠声音,知识无法跨越时空。约5000年前,苏美尔人用楔形文字记账,埃及人刻下圣书字,而中国的甲骨文则记录了商王的占卜。:灵活的舌头、下移的喉头,让人类能发出50种音素,远超黑猩猩的12种。从非洲篝火边的呢喃,到元宇宙中的虚拟翻译,语言始终是人类最伟大的发明。- 从玉蟾岩遗址的刻画符号(2万年前),到甲骨文、篆书、楷书,汉字是唯一延续至今的象形文字。

2025-05-21 12:10:22 413

原创 【运维】CentOs7安装Docker

虚拟机软件:VirtualBox创建虚拟机:内存2G、处理器数量1颗、硬盘8G、网络连接方式NAT(高级>设置端口转发)操作系统: 查看centos版本:cat /etc/redhat-releaseLinux uname(英文全拼:unix name)命令用于显示系统信息。uname 可显示电脑以及操作系统的相关信息。 本次安装使用CentOS Linux release 7.9.2009官网安装...

2021-09-30 17:49:58 214

原创 【算法】算法概念介绍

算法(Algorithm)是程序设计的灵魂,它是用系统的方法描述解决问题的策略机制。一个正确的算法满足以下性质:输入:有零个或多个输入。 输出:至少有一个输出。 确定性:组成算法的每条指令清晰,无歧义。 有限性:一个算法在执行有限步骤后必须结束,即计算步骤是有限的。描述算法可以有多种方式,如自然语言、流程图、伪代码、程序设计语言。 算法设计就是针对具体的问题,设计出良好的算法,使计算机能够解决该问题。 同一个问题可以采用不同的算法实现,不同的算法可能时间、空间并不相同, 一个算法的优劣可以用空间

2021-09-05 17:13:57 298

原创 【备忘】设计模式

详细内容参考:https://blog.csdn.net/A1342772/article/details/913491421 单例模式-Singleton2 抽象工厂-AbstractFactory3 工厂方法-FactoryMethod4 策略模式-Strategy5 门面模式-Facade6 责任链模式-ChainOfResponsibility7 装饰模式-Decorator8 适配器模式-Adaptor9 迭代模式-Iterator10 观察者模式-Ob

2021-08-27 09:55:36 134

原创 【备忘】gradle配置

官方文档(java相关):https://docs.gradle.org/current/userguide/userguide.html官方网站下载二进制包并解压移动到自己规划的目录解压后目录下的init.d文件夹下创建init.gradle文件将以下内容拷贝进去allprojects { repositories { maven { url 'file:///D:/soft_files/repository'} mavenLocal() ...

2021-08-20 11:03:08 257

原创 【备忘】Git命令汇总

1、初始化本地仓库 --- git init2 、将文件提交到暂存区 --- git add +文件名3、将暂存区内容提交到本地仓库 --- git commit -m "注释" +文件名4、查看工作区与暂存区的状态 --- git status5、按提交时间从最近到最远查看完整日志 --- git log6、分屏查看日志文件,向后翻 --- 空格,向前翻--- b, 退出 --- q7、按行显示完整日志 --- git log --pretty=oneline8、按行显示简..

2021-08-18 16:51:49 73

原创 【起步】注册账号

这里写自定义目录标题来报道学知识做计划去执行集反馈快迭代庆阶段无止境来报道今天注册了CSDN账号,发表第一篇文章学知识首先要多听多看多学多问,毕竟巧妇难为无米之炊做计划对世界及自身有了一定的了解,就会想自己要怎样怎样,那就需要做计划去执行计划是思维的产物,按计划找寻对应的资源并认真去执行,用实践检验计划集反馈实践过程中外界的响应,自身思想的变化,都是调整改进的良好抓手快迭代在已有实践的基础上,吸取经验教训,指导后续实践,螺旋上升庆阶段一张一弛,文武之道,达到阶段性目标后,应该适当

2021-08-15 00:04:25 669 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除