求一个M*N的矩阵的最大子矩阵和。

该博客介绍了一个求解M*N矩阵中最大子矩阵和的算法。通过遍历矩阵,计算每行元素的累加和,并应用动态规划思想找到最大子数组和,最终得到最大子矩阵的和。示例代码用C++编写,展示了一种解决此问题的方法。
摘要由CSDN通过智能技术生成
/*
copyright@nciaebupt 转载请注明出处
题目:求一个M*N的矩阵的最大子矩阵和。
比如在如下这个矩阵中:
 0 -2 -7  0
 9  2 -6  2
-4  1 -4  1
-1  8  0 -2
拥有最大和的子矩阵为:
 9 2
-4 1
-1 8
其和为15。
*/
#include <cstdlib>
#include <iostream>

int maxSubArray(int * array, int len){
  if(array == NULL || len < 1)  return -1;
  int max = -10000;
  int b = 0;
  for(int i = 0; i < len; ++i){
    if(b > 0){
      b += array[i];
    }
    else{
      b = array[i];
    }
    if(b > max) max = b;
  }
  return max;
}

int maxSubMatrix(int matrix[][4], int rowlen, int collen){
  if(matrix == NULL || rowlen < 1 || collen < 1) return -1;
  int max = -10000;
  int array[collen];
  for(int i = 0; i < rowlen; ++i){
    for(int j = 0; j < collen; ++j){//init array to 0
      array[j] = 0;
    }
    for(int j = i; j < rowlen; ++j){//from row i to row j
      for(int k
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值