[使用Arthur Callback Handler监控您的AI模型:实时记录的完整指南]

# 使用Arthur Callback Handler监控您的AI模型:实时记录的完整指南

## 引言

在现代的AI开发中,模型监控和可观测性是确保模型性能和可靠性的关键因素。Arthur提供了一种强大的平台来监控和分析您的AI模型。本文将教你如何使用Arthur的回调处理器(callback handler)来自动记录语言模型的推理过程。如果您还没有将模型加入Arthur,请先参考我们的[入门指南](https://app.arthur.ai/onboarding)。

## 主要内容

### 1. 安装和设置

首先,确保您拥有Arthur账户,并准备好您的凭证:

```python
arthur_url = "https://app.arthur.ai"
arthur_login = "your-arthur-login-username-here"
arthur_model_id = "your-arthur-model-id-here"

2. 引入必要的回调处理器

在代码中,我们需要用到ArthurCallbackHandler和其他辅助库来实现回调处理:

from langchain_community.callbacks import ArthurCallbackHandler
from langchain_core.callbacks import StreamingStdOutCallbackHandler
from langchain_core.messages import HumanMessage
from langchain_openai import ChatOpenAI

3. 使用Arthur回调处理器创建Langchain LLM

以下是一个创建支持流式输出和Arthur记录的语言模型的示例函数:

def make_langchain_chat_llm():
    return ChatOpenAI(
        streaming=True,
        temperature=0.1,
        callbacks=[
            StreamingStdOutCallbackHandler(),
            ArthurCallbackHandler.from_credentials(
                arthur_model_id, arthur_url=arthur_url, arthur_login=arthur_login
            ),
        ],
    )

4. 运行语言模型

通过下述代码运行模型,并在控制台中输入内容进行测试:

chatgpt = make_langchain_chat_llm()

def run(llm):
    history = []
    while True:
        user_input = input("\n>>> input >>>\n>>>: ")
        if user_input == "q":
            break
        history.append(HumanMessage(content=user_input))
        history.append(llm(history))

run(chatgpt)

常见问题和解决方案

  1. 网络访问问题:由于某些地区的网络限制,您可能需要考虑使用API代理服务来提高访问Arthur API的稳定性。

  2. 模型记录问题:确保您的arthur_model_idarthur_login信息正确无误,以免影响记录结果。

  3. 异步处理:理解如何定义和注册回调函数对充分利用事件驱动编程非常关键。

总结和进一步学习资源

使用Arthur的回调处理器可以帮助您实时监控AI模型的工作状态。如果您希望了解更多,建议查看以下资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值