# 使用Arthur Callback Handler监控您的AI模型:实时记录的完整指南
## 引言
在现代的AI开发中,模型监控和可观测性是确保模型性能和可靠性的关键因素。Arthur提供了一种强大的平台来监控和分析您的AI模型。本文将教你如何使用Arthur的回调处理器(callback handler)来自动记录语言模型的推理过程。如果您还没有将模型加入Arthur,请先参考我们的[入门指南](https://app.arthur.ai/onboarding)。
## 主要内容
### 1. 安装和设置
首先,确保您拥有Arthur账户,并准备好您的凭证:
```python
arthur_url = "https://app.arthur.ai"
arthur_login = "your-arthur-login-username-here"
arthur_model_id = "your-arthur-model-id-here"
2. 引入必要的回调处理器
在代码中,我们需要用到ArthurCallbackHandler
和其他辅助库来实现回调处理:
from langchain_community.callbacks import ArthurCallbackHandler
from langchain_core.callbacks import StreamingStdOutCallbackHandler
from langchain_core.messages import HumanMessage
from langchain_openai import ChatOpenAI
3. 使用Arthur回调处理器创建Langchain LLM
以下是一个创建支持流式输出和Arthur记录的语言模型的示例函数:
def make_langchain_chat_llm():
return ChatOpenAI(
streaming=True,
temperature=0.1,
callbacks=[
StreamingStdOutCallbackHandler(),
ArthurCallbackHandler.from_credentials(
arthur_model_id, arthur_url=arthur_url, arthur_login=arthur_login
),
],
)
4. 运行语言模型
通过下述代码运行模型,并在控制台中输入内容进行测试:
chatgpt = make_langchain_chat_llm()
def run(llm):
history = []
while True:
user_input = input("\n>>> input >>>\n>>>: ")
if user_input == "q":
break
history.append(HumanMessage(content=user_input))
history.append(llm(history))
run(chatgpt)
常见问题和解决方案
-
网络访问问题:由于某些地区的网络限制,您可能需要考虑使用API代理服务来提高访问Arthur API的稳定性。
-
模型记录问题:确保您的
arthur_model_id
和arthur_login
信息正确无误,以免影响记录结果。 -
异步处理:理解如何定义和注册回调函数对充分利用事件驱动编程非常关键。
总结和进一步学习资源
使用Arthur的回调处理器可以帮助您实时监控AI模型的工作状态。如果您希望了解更多,建议查看以下资源:
- Arthur的官方文档
- 事件驱动编程基础
- Langchain库的使用
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---