J2ME经验总结之IO读取

 

只以InputStream为例,讲讲IO读取的性能问题。
一般的硬件设备,或者网络,访问的速度都有可能存在一定的瓶颈。此外,建立连接的时间往往被我们忽略了。
特别是在J2ME所运行的受限平台上,这个连接的时间往往是不可忽略的。所以我们应该尽量减少连接次数,尽量一次交换更多的数据。

先看看示范代码吧:
while ((ch = inputStream.read()) != -1) {

}
以上是标准代码,曾让我疑惑过:
使用while循环,一个一个读,会不会效率很低?
于是我拿了一个30K的文件,跟下面的方法对比了一下。
byte[] data = new byte[inputStream.available()];
inputStream.read(data);
结果这两个方法的速度不相上下。

后来看了CLDC的源代码才发现,InputStream的read(byte[] data)等批量读取的方法都是在read()方法上加循环实现的。
原来是自己把自己耍了一回……

不过,能用批量读取的时候还是应该尽量用;万一某些平台,某些继承于InputStream的扩展类,用更高效的方法重载了批量读取方法呢?

此外,还有一点很重要,很多情况是无法调用InputStream.available()函数的。特别是网络连接。这样才能叫“流”嘛。
这就需要使用缓冲来解决了,下面提供一个我写的方法,没什么大不了的,用起来感觉还不错,今天兴奋了就介绍一下。
 private static final int BUFFER_SIZE = 1024;

 public static byte[] read(InputStream is) throws Exception {
  byte[] ret = null;
  if (is.available() > 0) {
   ret = new byte[is.available()];
   is.read(ret);
  } else {
   int rd;
   Vector temp = new Vector();
   int size = 0;
   while (true) {
    byte[] buffer = new byte[BUFFER_SIZE];
    rd = is.read(buffer, 0, BUFFER_SIZE);
    if (rd == BUFFER_SIZE) {
     temp.addElement(buffer);
     size += BUFFER_SIZE;
    } else {
     if (rd > 0) {
      size += rd;
     }
     int tsize = temp.size();
     ret = new byte[size];
     for (int i = 0; i < tsize; i++) {
      byte[] t = (byte[]) temp.elementAt(i);
      System.arraycopy(t, 0, ret, i * BUFFER_SIZE,
        BUFFER_SIZE);
     }
     if (rd > 0) {
      System.arraycopy(buffer, 0, ret, tsize * BUFFER_SIZE,
        rd);
     }
     break;
    }
   }
  }
  return ret;
 }

这个方法使用了Vector,有些人可能觉得它影响效率。
其实不然,我测试过。
之所以使用这个有点变态的方法,是因为我向来比较抠,最讨厌遇到不能获取长度的Stream啦,定义多大的缓冲都怕不合适。
于是,就使用了这样一个爱死不死的方法。反正手机内存就那点,我也不去费心去选取buffer长度了,让它自己看着办。 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值