代码随记-算法设计与分析
主要是记录代码,没有排版美化
分治法-循环赛制问题
题目:
2019年,德国甲级联赛刚刚落下帷幕。设有n支队伍参加循环赛,要求设计一个满足以下要求比赛日程表:
1)每支队伍必须与其它n-1支队伍各赛一次;
2)每支队伍一天只能赛一次。
非递归
代码
#include<bits/stdc++.h>
using namespace std;
int a[100][100];
//从(fromx,fromy)复制到(tox,toy)规模为r的正方形
void Copy(int tox, int toy, int fromx, int fromy, int r){
for (int i=0; i<r; i++){
for (int j =0; j<r; j++){
a[tox+i][toy+j] = a[fromx+i][fromy+j];
}
}
}
void Table(int n){
for (int r=1; r<n; r*=2){ //控制规模的大小,次方
for(int j=0;j<n;j+=r*2){//控制列的下标
Copy(r,r+j,0,j,r);//从左上拷贝到右下
Copy(r,j,0,r+j,r);//从右上拷贝到左下
}
}
}
void Print(int n){
cout<<"循环赛日程为:"<<endl;
for(int i =0;i<n;i++){
for(int j=0; j<n; j++){
printf("%4d",a[i][j]);
}
cout<<endl;
}
}
int main(){
//初始化
int n;
cout<<"请输入k值(2的k次方只队伍)"<<endl;
int k;
cin>>k;
n=pow(2,k);
for(int i=0;i<n;i++){
a[0][i] = i+1; //初始化第一行 填充数据,把第一行填满
}
Table(n);
Print(n);
return 0;
}
输入与输出
动态规划-台阶问题
题目
有n级台阶,一个人每次上一级或者两级,问有多少种走完n级台阶的方法。
实际情况:给定一个矩阵m,从左上角开始每次只能向右走或者向下走,最后达到右下角的位置,路径中所有数字累加起来就是路径和,返回所有路径的最小路径和,如果给定的m如下,那么路径1,3,1,0,6,1,0就是最小路径和,返回12.
1 3 5 9
8 1 3 4
5 0 6 1
8 8 4 0
代码
#include <bits/stdc++.h>
using namespace std;
const int N=1e3+10;
int n,m,dp[N][N],a[N][N];
char rec[N][N];
void printRoad(char rec[N][N],int i,int j)
{
if(i==0||j==0) return;
if(rec[i][j]=='L')
{
printf("(%d,%d)\n",i,j);
printRoad(rec,i,j-1);
}
else
{
printf("(%d,%d)\n",i,j);
printRoad(rec,i-1,j);
}
}
int main()//对比最长公共子序列问题
{
ios::sync_with_stdio(false);//
cin>>n>>m;
for(int i=1; i<=n; i++)
{
for(int j=1; j<=m; j++)
{
cin>>a[i][j];
if(i==1) // 第一行只能由左边走到
{
dp[i][j]=dp[i][j-1]+a[i][j];
rec[i][j]='L';
path[i][j]= {i,j-1};
}
else if(j==1){
dp[i][j]=dp[i-1][j]+a[i][j];
path[i][j]= {i-1,j};
rec[i][j]='U';
}
else
{
if(dp[i-1][j]<=dp[i][j-1])//比较左边和上面
{
dp[i][j]=dp[i-1][j]+a[i][j];//上边小
rec[i][j]='U';//记录路径,便于回溯
}
else
{
dp[i][j]=dp[i][j-1]+a[i][j];
rec[i][j]='L';
}
}
}
}
printf("最短距离:%d\n",dp[n][m]);
printf("\n最短路径:\n");
printRoad(rec,0,0);
return 0;
}
/*
4 4
1 3 5 9
8 1 3 4
5 0 6 1
8 8 4 0
1 4 9 18
9 5 8 12
14 5 11 12
22 13 15 12
ans:
最短距离:12
最短路径:
(1,1)
(1,2)
(2,2)
(3,2)
(3,3)
(3,4)
(4,4)
4 4
1 3 1 9
3 1 3 4
5 0 6 1
8 8 4 0
ans:
最短距离:12
最短路径:
(1,1)
(1,2)
(2,2)
(3,2)
(3,3)
(3,4)
(4,4)
*/
贪心问题-火车站台安排问题
题目:
站台安排问题:一个火车站有一个所有火车到达和离开的时间表,需要找出最小站台数,使得按照此时间表调度时,可以容纳所有的火车。已知火车时刻表如下所示,试编程实现,需要的最少站台有几个。
代码
#include <bits/stdc++.h>
using namespace std;
const int N=1e3+10;
int A[N],ans=0,k,flag=0;
struct node
{
int s,f,num,p;
} train[N];
bool cmp(node a1,node a2)
{
return a1.f<a2.f;
}
int Selector(int n)
{
int j;
for(int i=1;i<=n;i++)//
if(train[i].p){
A[i]=1;
j=i;
break;
}
for(int i=j+1; i<=n; i++)
{
if(train[i].p)
{
if(train[i].s>=train[j].f){
A[i]=1;
j=i;
}
else
A[i]=0;
}
if(k==1&&train[i].p==1)
{
A[i]=1;
train[i].p=1;
return ++ans;
}
}
return ++ans;
}
int main()
{
int n,cnt=0;//火车数目
cout<<"请输入火车数目:";
scanf("%d",&n);
cout<<endl<<"请依次输入火车序号,到站时间,离站时间:"<<endl;
for(int i=1; i<=n; i++)
{
cin>>train[i].num>>train[i].s>>train[i].f; //录入火车数据
train[i].p=1;
}
cout<<endl<<"按最早离开时间排序后:"<<endl;
sort(train+1,train+n+1,cmp);
for(int i=1; i<=n; i++){
printf("%d %.4d %.4d\n",train[i].num,train[i].s,train[i].f);
}
cout<<endl;
while(true){
ans=Selector(n);
printf("第%d站:\n",++cnt);
for(int i=1; i<=n; i++)
{
if(A[i]&&train[i].p){
train[i].p=0;
printf("%d %d %d\n",train[i].num,train[i].s,train[i].f);
}
}
int k;
for(k=1;k<=n;k++)
if(train[k].p==1) break;
if(k==n+1) break;
cout<<endl;
}
cout<<endl<<"站台数目:";
cout<<ans<<endl;
return 0;
}
/*
4
1 0900 0930
2 0915 1300
3 1030 1100
4 1045 1145
排序后
1 0900 0930
3 1030 1100
4 1045 1145
2 0915 1300
5
1 0900 0930
2 0915 1300
3 1030 1100
4 1045 1145
5 1130 1200
排序后
1 0900 0930
3 1030 1100
4 1045 1145
5 1130 1200
2 0915 1300
4
1 0900 1000
2 0945 1015
3 1030 1100
4 1015 1200
排序后
1 0900 1000
2 0945 1015
3 1030 1100
4 1015 1200
4
1 0900 0930
2 0920 0950
3 1000 1200
4 0940 1500
*/
回溯法-素数环问题
题目
问题描述:输入正整数n,把整数1,2,3,4……n组成一个环,使得相邻的两个整数之和均为素数。
样例
输入:
6
输出:1 4 3 2 5 6
1 6 5 2 3 4
代码
#include <bits/stdc++.h>
using namespace std;
int a[100],t[100],n;//a是满足数组,t是记录数组
void print() //输出
{
if(a[1]==1)
{
for(int k=1; k<=n; ++k)
cout<<a[k]<<" ";
}
cout<<endl;
}
int isPrime(int x) //判断素数
{
if(x==0||x==1)
return 0;
for(int i=2; i<=sqrt(x); ++i)
if(x%i==0)
return 0;
return 1;
}
void DFS(int x) //搜索回溯
{
for(int i=2; i<=n; i++)
if(isPrime(i+a[x-1])&&(!t[i])) //如果相邻是质数,且没有被使用过,记录.
{
a[x]=i;
t[i]=1;
if(x==n){//如果加满了
if(isPrime(a[n]+a[1]))//判断首尾
print();
}
else//没有加满,就回溯
DFS(x+1);//回溯
t[i]=0;//清零,为下一次准备
}
}
int main()
{
scanf("%d",&n);
a[1]=1;
DFS(2);
return 0;
}