算法--差分

算法基础系列


前言

差分与前缀和是一家人,互为逆操作,类似于数学中的求导和积分
前缀和的知识点,见之前的文章,点这里

概念

设两个数组 ab
a数组是b数组的前缀和数组
b数组是a数组的差分数组
b[i] = a[i] - a[i-1]

算法问题
如何在已知数组a的情况下,对a'数组区间中的每一个数加上一个数c,如何快速求出?
暴力思路:for循环,时间复杂度是 O ( n ) O(n) O(n)
差分算法思路:只对区间两点进行加减,b[l] + cb[r] - c
在这里插入图片描述

这里的b[l] + c加上c之后,会影响其前缀和数组,使其后面的都加上了c,则需要消除区间外的影响,即在右区间减去c

具体应用:
输入一个长度为 n 的整数序列。接下来输入 m 个操作,每个操作包含三个整数 l,r,c,表示将序列中 [l,r] 之间的每个数加上 c。
首先对序列进行读取,且读取的序列看作是"前缀和数组",方法是假定前缀和数组都是0,则差分数组(原数组)也是0,对前缀和数组进行加入操作,也就是 [1,1] + a[1] ,则得到了"前缀和数组",这一步是为了构造差分数组
再根据题目要求读入操作区间,进行相应操作,最后对差分数组求出前缀和,即使答案

步骤:先根据原数组构造差分数组,然后进行相应操作,最后求前缀和

个人难点:怎么构造差分数组(根据原数组)?
A:把输入的原数组看做是前缀和数组
假定前缀和数组a(输入的原数组)和差分数组b都是0,对前缀和数组的[i,i]位置上进行插入操作(加上某个数),即这里加上原数组,即可得到对应的差分数组。配合代码理解

代码模板

一维差分

给区间[l, r]中的每个数加上c:B[l] += c, B[r + 1] -= c

二维差分

给以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵中的所有元素加上c:
S[x1, y1] += c, S[x2 + 1, y1] -= c, S[x1, y2 + 1] -= c, S[x2 + 1, y2 + 1] += c

差分(典型)

传送门
在这里插入图片描述
代码:

#include <iostream>

using namespace std;

const int N = 100010;

int n, m;
int a[N], b[N];

void insert(int l, int r, int c)
{
    b[l] += c;
    b[r + 1] -= c;
}

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++)
        scanf("%d", &a[i]); //输入初始数组
    // 初始前缀和为 0
    // 初始差分为 0
    for (int i = 1; i <= n; i++) //在区间[i,i]上加上a[i]
        insert(i, i, a[i]);      //构造差分数组
    while (m--)
    {
        int l, r, c;
        scanf("%d%d%d", &l, &r, &c);
        insert(l, r, c); //对差分数组进行相应操作
    }
    for (int i = 1; i <= n; i++) //对差分数组求前缀和 即 合并
    {
        b[i] += b[i - 1];
        printf("%d ", b[i]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tancy.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值