算法基础系列
前言
差分与前缀和是一家人,互为逆操作,类似于数学中的求导和积分
前缀和的知识点,见之前的文章,点这里
概念
设两个数组 a
和 b
a
数组是b
数组的前缀和数组
b
数组是a
数组的差分数组
b[i] = a[i] - a[i-1]
算法问题:
如何在已知数组a
的情况下,对a'
数组区间中的每一个数加上一个数c
,如何快速求出?
暴力思路:for
循环,时间复杂度是
O
(
n
)
O(n)
O(n)
差分算法思路:只对区间两点进行加减,b[l] + c
,b[r] - c
,
这里的b[l] + c
加上c之后,会影响其前缀和数组,使其后面的都加上了c,则需要消除区间外的影响,即在右区间减去c
具体应用:
输入一个长度为 n 的整数序列。接下来输入 m 个操作,每个操作包含三个整数 l,r,c,表示将序列中 [l,r] 之间的每个数加上 c。
首先对序列进行读取,且读取的序列看作是"前缀和数组",方法是假定前缀和数组都是0,则差分数组(原数组)也是0,对前缀和数组进行加入操作,也就是 [1,1] + a[1]
,则得到了"前缀和数组",这一步是为了构造差分数组。
再根据题目要求读入操作区间,进行相应操作,最后对差分数组求出前缀和,即使答案
步骤:先根据原数组构造差分数组,然后进行相应操作,最后求前缀和
个人难点:怎么构造差分数组(根据原数组)?
A:把输入的原数组看做是前缀和数组。
假定前缀和数组a
(输入的原数组)和差分数组b
都是0,对前缀和数组的[i,i]
位置上进行插入操作(加上某个数),即这里加上原数组,即可得到对应的差分数组。配合代码理解
代码模板
一维差分
给区间[l, r]中的每个数加上c:B[l] += c, B[r + 1] -= c
二维差分
给以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵中的所有元素加上c:
S[x1, y1] += c, S[x2 + 1, y1] -= c, S[x1, y2 + 1] -= c, S[x2 + 1, y2 + 1] += c
题
差分(典型)
传送门
代码:
#include <iostream>
using namespace std;
const int N = 100010;
int n, m;
int a[N], b[N];
void insert(int l, int r, int c)
{
b[l] += c;
b[r + 1] -= c;
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++)
scanf("%d", &a[i]); //输入初始数组
// 初始前缀和为 0
// 初始差分为 0
for (int i = 1; i <= n; i++) //在区间[i,i]上加上a[i]
insert(i, i, a[i]); //构造差分数组
while (m--)
{
int l, r, c;
scanf("%d%d%d", &l, &r, &c);
insert(l, r, c); //对差分数组进行相应操作
}
for (int i = 1; i <= n; i++) //对差分数组求前缀和 即 合并
{
b[i] += b[i - 1];
printf("%d ", b[i]);
}
return 0;
}