差分就是将一个数列的每一项与前一项做差。其中第一项是原序列本身,
差分数组的性质:
1.差分数组的前缀和就是原序列(差分 与前缀和 近似一个 互逆 的操作 )。
2.对原序列进行更新,比如将区间[L,R]的每一项都加上val,
等价于将差分数组的第L项加 val,第R + 1项减val。
已知 a[1] ~~ a[n] // a 为原数列
如何得到差分数列 b[1] ~~ b[n] // b 为差分数列
a[0]=0; //注意 原数列 要从 a[1] 开始 ,防止数组越界
for(int i=1;i<=n;i++)
{
b[i]=a[i]-a[i-1];
}
对于数组a [l,r] 区间的 每个数 加上一个数 c,则可对差分数列 b 处理
b[l]+=c;
b[r+1]-=c;
如何由差分数列b 得到原数列 a ,即对 数列b 求前缀和
a[i]=b[1]+b[2]+.....b[i]
简单推导证明
b[1]=a[1]-a[0];
b[2]=a[2]-a[1];
b[3]=a[3]-a[2];
a[3]=(a[1]-a[0])+(a[2]-a[1])+(a[3]-a[2])
=b[1]+b[2]+b[3];