NEFU大一寒假训练五(GCD&&LCM&&快速幂)(^_^)

本文介绍了多个与最大公约数(GCD)、最小公倍数(LCM)以及快速幂算法相关的问题,包括计算两个数的GCD和LCM、寻找特定条件下的最小整数c、求多个数的最大公约数和最小公倍数,以及在不同场景下应用快速幂取模的方法。每个问题都给出了示例输入和输出,适合算法初学者进行练习和理解。
摘要由CSDN通过智能技术生成

A:最大公约数和最小公倍数

Description
请计算2个数的最大公约数和最小公倍数;(最大公约数可以使用辗转相除法,最小公倍数=2个数的乘积/它们的最大公约数;)
Input
输入数据有多组,每组2个正整数a,b(2<a,b<1000)
Output
在一行内输出a和b的最大公约数和最小公倍数;
Sample Input
15 10
Sample Output
5 30

#include <iostream>
#include <bits/stdc++.h>
using namespace std;
int gcd(int x,int y)
{
   
    return y?gcd(y,x%y):x;
}
int lcm(int x,int y)
{
   
    return x/gcd(x,y)*y;
}
int main()
{
   
    int a,b,ans1,ans2;
    int gcd(int x,int y);
    while(cin>>a>>b)
    {
   
         ans1=gcd(a,b);
         ans2=lcm(a,b);
         cout<<ans1<<" "<<ans2<<endl;
    }
    return 0;
 }

B:又见GCD

Description
有三个正整数a,b,c(0<a,b,c<106),其中c不等于b。若a和c的最大公约数为b,现已知a和b,求满足条件的最小的c。
Input
每行输入两个正整数a,b。
Output
输出对应的c,每组测试数据占一行
Sample Input
6 2
12 4
Sample Output
4
8

#include <iostream>
#include <bits/stdc++.h>
using namespace std;
int gcd(int x,int y)
{
   
    return y?gcd(y,x%y):x;
}
int main()
{
   
    int a,b,c,i;
    while(cin>>a>>b)
    {
   
        for(i=2;;i++)
            if(gcd(a,i*b)==b)break;
        c=i*b;
        cout<<c<<endl;
    }
    return 0;
}

C: 多个数的最大公约数

Description
给定n(n<=10)个正整数,你的任务就是求它们的最大公约数,所有数据的范围均在long long内。
Input
输入数据有多组,每组2行,第一行为n,表示要输入数字的个数,接下来第二行有n个正整数。
Output
输出一个数,即这n个数的最大公约数。
Sample Input
5
2 4 6 8 10
2
13 26
Sample Output
2
13

#include <iostream>
#include <bits/stdc++.h>
using namespace std;
long long gcd(long long x,long long y)
{
   
    return y?gcd(y,x%y):x;
}
int main()
{
   
    int n,i;
    long long a
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值