机器学习
文章平均质量分 78
千空
星光闪耀,不知何时熄灭
展开
-
计算机视觉:随机森林算法在人体识别中的应用
摘 要人体识别是计算机视觉领域的一大类热点问题,其研究内容涵盖了人体的监测与跟踪、手势识别、动作识别、人脸识别、性别识别和行为与事件识别等,有着非常广泛的应用价值。随机森林以它自身固有的特点和优良的分类效果在众多的机器学习算法中脱颖而出。随机森林算法的实质是一种树预测器的组合,其中每一棵树都依赖于一个随机向量,森林中的所有的向量都是独立同分布的。本文简单介绍了随机森林的原理,并对近几年来随转载 2015-06-18 16:46:27 · 1718 阅读 · 0 评论 -
【最全干货】机器视觉的资料整理
机器视觉和图像处理的研究工作,有两个好方法:1、把握国际最前沿的内容,解决方法是找到这个方向公认成就最高的几个超级专家2、所做的工作具备很高的实用性,解决方法是找到实际应用的项目,边做边写文章这儿给大家收集了机器视觉和图像处理领域的核心材料。依照下面目录整理:[1] 研究群体(国际国内)[2] 专家主页[3] 前沿国际转载 2015-09-17 21:31:49 · 2157 阅读 · 1 评论 -
计算图上的微积分:反向传播算法
引言Backpropagation (BP) 是使得训练深度模型在计算上可行的关键算法。对现代神经网络,这个算法相较于无脑的实现可以使梯度下降的训练速度提升千万倍。而对于模型的训练来说,这其实是 7 天和 20 万年的天壤之别。除了在深度学习中的使用,BP 本身在其他的领域中也是一种强大的计算工具,例如从天气预报到分析数值的稳定性——只是同一种思想拥有不同的名称而已。实际上,BP 已经转载 2015-09-07 20:46:35 · 2376 阅读 · 0 评论 -
Machine Learning “for Dummies” (Part 1)
机器学习“傻瓜书”(一)你可能已经听说过“机器学习”(或者“数据挖掘”、“大数据”、”数据分析“、“云计算”)但是你并不确切的了解它们究竟是神马。你可能知道它们是一些计算机或数学的玩意儿,可能你已经使用过依赖机器学习的软件,但对你而言它就像魔术。机器学习应用广泛,例如银行用它探查诈骗或者预估风险,邮件管理器用它过滤垃圾邮件,医生用它帮助诊断,生物学家用它分析DNA,谷歌、必应、雅虎用它回答翻译 2015-08-12 20:50:16 · 2138 阅读 · 0 评论 -
详细解释数据挖掘中的10大算法
在一份调查问卷中,三个独立专家小组投票选出的十大最有影响力的数据挖掘算法,今天我打算用简单的语言来解释一下。一旦你知道了这些算法是什么、怎么工作、能做什么、在哪里能找到,我希望你能把这篇博文当做一个跳板,学习更多的数据挖掘知识。还等什么?这就开始吧!1.C4.5算法C4.5是做什么的?C4.5 以决策树的形式构建了一个分类器。为了做到这一点,需要给定 C4.转载 2015-09-07 20:39:02 · 3260 阅读 · 0 评论 -
Machine Learning “for Dummies” (part 2)
机器学习“傻瓜书“ 回到鸢尾花的故事:我们有一系列用花、萼花瓣的宽和长以及种类描述的鸢尾花表,同时有一朵奇葩(姑且称为神秘花),我们要找到它的类属性。为了实现这个任务,我们假设鸢尾花的属性可以推测其种类。方案1:相同的观测值我们首先容易想到的方法是寻找另外一个有相同花瓣/花萼长宽属性的鸢尾花。如果我们找到了这样的鸢尾花,那么它的种类很可能和神秘花是相同的。然而我们不能期待一翻译 2015-08-21 22:39:04 · 1285 阅读 · 0 评论 -
准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure,confusion matrix
自然语言处理(ML),机器学习(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的工作,而其评价指标往往有如下几点:准确率(Accuracy),精确率(Precision),召回率(Recall)和F1-Measure。本文将简单介绍其中几个概念。中文中这几个评价指标翻译各有不同,所以一般情况下推荐使用英文。现在我先假定一个具体场景作为例子。转载 2015-09-04 17:46:30 · 3391 阅读 · 0 评论 -
机器学习常见算法分类汇总
机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。学习方式根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可转载 2015-06-24 16:38:20 · 471 阅读 · 0 评论 -
机器学习算法基础知识
可利用的算法非常之多。困难之处在于既有不同种类的方法,也有对这些方法的扩展。这导致很快就难以区分到底什么才是正统的算法。在这个帖子里,我希望给你两种方式来思考和区分在这个领域中你将会遇到的算法。第一种划分算法的方式是根据学习的方式,第二种则是基于形式和功能的相似性(就像把相似的动物归为一类一样)。两种方式都是有用的。学习方式基于其与经验、环境,或者任何我们称之为输入数据的相转载 2015-06-24 16:49:46 · 1131 阅读 · 0 评论 -
解决机器学习问题的步骤
随着致力于应用机器学习问题,你会摸索出一个快速获取具有棒棒哒鲁棒性结果的模式或步骤,你可以在下一个项目中重用这个步骤,该步骤越强健,你得到可靠结果的速度就越快。应用机器学习的步骤5步法:1.定义问题2.准备数据3.抽查算法4.改善结果5.展示结果以上步骤具有灵活性。例如“准备数据”步骤可以被分解为分析数据(总结和绘图)和准备数据(准备实验样本)。“抽查算法”步骤可能翻译 2016-05-17 12:43:46 · 1892 阅读 · 0 评论