BZOJ3702/2212 [Poi2011]Tree Rotations/二叉树

本文介绍了一种通过维护子树中的权值线段树来计算逆序对数的算法,利用该算法可以在O(nlogn)的时间复杂度内找到使逆序对数量最小的方案。适用于树形结构数据的问题解决。

双倍经验题……

首先两个子树内怎么排列对两个子树之间产生的逆序对没有影响,所以对于每个节点都要选择交换或者不交换,使得这两个子树形成的逆序对数最小,全局逆序对数就最小了

每个点维护一个权值线段树,里边是子树里的权值,非叶子节点的等于两个儿子节点的线段树合并,而我们在合并的过程中就可以算出来逆序对数

复杂度O(n log n)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<iomanip>
#include<cstring>
#include<cmath>
#include<ctime>
#include<vector>
#include<stack>
#include<queue>
#include<set>
#include<bitset>
#include<map>
using namespace std;
#define MAXN 800010
#define MAXM 6000010
#define INF 1000000000
#define MOD 1000000007
#define ll long long
#define eps 1e-8
int n;
int l[MAXN],r[MAXN];
int RT,TOT;
int v[MAXN];
int rt[MAXN];
int siz[MAXM],son[MAXM][2];
int tot;
ll ans;
void change(int &x,int l,int r,int p){
    if(!x){
        x=++tot;
    }
    siz[x]++;
    if(l==r){
        return ;
    }
    int mid=l+r>>1;
    if(p<=mid){
        change(son[x][0],l,mid,p);
    }else{
        change(son[x][1],mid+1,r,p);
    }
}
ll ad1,ad2;
int merge(int x,int y){
    if(!x||!y){
        return x+y;
    }
    ad1+=(ll)siz[son[x][0]]*siz[son[y][1]];
    ad2+=(ll)siz[son[x][1]]*siz[son[y][0]];
    son[x][0]=merge(son[x][0],son[y][0]);
    son[x][1]=merge(son[x][1],son[y][1]);
    siz[x]+=siz[y];
    return x;
}
void get(int &x){
    x=++TOT;
    scanf("%d",&v[x]);
    if(!v[x]){
        get(l[x]);
        get(r[x]);
        ad1=ad2=0;
        rt[x]=merge(rt[l[x]],rt[r[x]]);
        ans+=min(ad1,ad2);
    }else{
        change(rt[x],1,n,v[x]);
    }
}
int main(){
    scanf("%d",&n);
    get(RT);
    printf("%lld\n",ans);
    return 0;
}
 
/*
4
0 0 1 3 0 4 2 
*/



评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值