信息安全数学基础
NelsonCheung
这个作者很懒,什么都没留下…
展开
-
信息安全数学基础 第4章 二次同余式与平方剩余
二次同余式与平方剩余4.1 一般二次同余式定义 4.1.1设mmm是正整数。若同余式x2≡amod m, (a,m)=1x^2\equiv a\mod m,\ (a,m)=1x2≡amodm, (a,m)=1有解,则aaa叫做模mmm的平方剩余(二次剩余);否则,aaa叫做模mmm的平方非剩余。4.2 模为奇素数的平方剩余与平方非剩余定理 4.2.1(欧拉判别条件)设ppp是奇素数,(a,p)=1(a,p)=1(a,p)=1,则aaa是模ppp的平方剩余的充分原创 2020-11-20 17:36:25 · 3290 阅读 · 0 评论 -
信息安全数学基础 第3章 同余式
第3章 同余式定义 3.1.1设mmm是一个正整数,f(x)f(x)f(x)为多项式f(x)=anxn+an−1xn−1+⋯+a1x+a0f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0f(x)=anxn+an−1xn−1+⋯+a1x+a0其中aia_iai是正整数,则f(x)≡0mod mf(x)\equiv0\mod mf(x)≡0modm叫做模mmm同余式。若m∤anm\nmid a_nm∤an,则nnn称为f(x)f(x)f(x)原创 2020-10-29 00:10:46 · 1896 阅读 · 1 评论 -
信息安全数学基础 第一章 整数的可除性
第一章 整数的可除性1.1 整除的概念、欧几里得除法定义 1.1.1设a,ba,ba,b是任意的两个整数,其中b≠0b\ne0b=0。如果存在一个整数qqq使得等式a=q⋅ba=q\cdot ba=q⋅b成立,就称bbb整除aaa,或aaa被bbb整除,记作b∣ab\mid ab∣a,并把bbb叫做aaa的因数,aaa叫做bbb的倍数。反之,若bbb不能整除aaa,则记作b∤ab\nmid ab∤a。整除显然有如下结论0是任何非零整数的倍数。1是任何整数的因数。任何非零整数a是其原创 2020-10-16 20:13:56 · 1146 阅读 · 0 评论