sklearn chapter4

维度

对于数组来说维度就是括号的数量 或者 .shape后含有数字的个数

对于图像来说 维度就是图像中特征向量的数量
特征向量可以理解成坐标轴

降维算法

sklearn中的降维算法

在这里插入图片描述
一个特征的方差越大,表示所涵盖的信息越多
Var = 1(n-1)∑(xi-xhat)^2
n-1是无偏估计

PCA

重要参数
n_components
降维后需要保留的特征数量 特征百分比
范围在 [0,min(X.shape)]
属性
.explained_variance_
查看降维后每个新特征特征向量上所带的信息大小(可解释方差的大小)
.explained_variance_ration_
查看每个新特征向量所占信息量展原数据信息量的占比
累计可解释方差贡献率曲线
当不填写任何值时,默认返回min(X.shape)个特征,一般来说,这样填写不会有任何作用,但可以用这种方式画出累计可解释方差贡献率曲线 选择最好的n_components

累积可解释方差贡献率曲线是一条以降维后保留的特征个数为横坐标,降维后新特征矩阵捕捉到的可解释方差贡献率为纵坐标的曲线,能够帮助我们决定n_components最好的取值。
具体操作
plt.plot([维度个数],np.cumsum(pca_line.explained_variance_ratio_))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值