Numpy的 np.arange 和 np.linspace区别

np.arangenp.linspace 虽然都是用来生成数值数组的函数,但它们的作用和用途是有明显区别的,这就是为什么Numpy提供了这两个不同的函数。

np.arange

np.arange 类似于Python的内置函数 range,它用于生成一个在给定间隔内的等差数列。其基本用法是:

np.arange([start,] stop[, step,], dtype=None)

关键点:

  • 它生成的是一个等差数列,即每个元素之间的差是固定的。
  • start 是序列的起始值,默认为0。
  • stop 是序列的结束值,但不包括在内。
  • step 是序列的步长,默认为1。
  • dtype 指定了返回数组的数据类型。
    例如:
np.arange(0, 10, 2)  # 生成数组 [0, 2, 4, 6, 8]

np.linspace

np.linspace 用于生成在指定区间内均匀分布的数值数组。其基本用法是:

np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)

关键点:

  • 它生成的是一个在指定区间内均匀分布的数列,即元素之间的间隔是相等的。
  • start 是区间的起始值。
  • stop 是区间的结束值。
  • num 是要生成的样本数量,默认为50。
  • endpoint 指定是否包含结束值,默认为True。
  • retstep 如果为True,则返回数组和步长。
  • dtype 指定了返回数组的数据类型。
    例如:
np.linspace(0, 10, 5)  # 生成数组 [ 0.,  2.5,  5.,  7.5, 10.]

区别和用途

  • np.arange 用于当你需要生成一个具有固定步长的等差数列时。
  • np.linspace 用于当你需要在指定的起始和结束值之间生成固定数量的均匀分布样本时。
    简而言之,np.arange 更适合当你知道步长,而 np.linspace 更适合当你知道需要生成的元素数量。这两个函数的这种区别使得它们在不同的场景下非常有用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

能力工场小马哥

如果对您有帮助, 请打赏支持~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值