非常好的树形DP题,调戏了我两个晚上啊。。。
详细解释看代码注释吧。。。没有力气说了。。。
/*******************************************************************************
# Author : Neo Fung
# Email : neosfung@gmail.com
# Last modified: 2012-04-28 20:12
# Filename: ZOJ2834 Maximize Game Time.cpp
# Description :
******************************************************************************/
#ifdef _MSC_VER
#define DEBUG
#define _CRT_SECURE_NO_DEPRECATE
#endif
#include <fstream>
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <string>
#include <limits.h>
#include <algorithm>
#include <math.h>
#include <numeric>
#include <functional>
#include <ctype.h>
#define MAX 1010
using namespace std;
struct NODE
{
//用父子-兄弟节点表示这棵树
int father,child,brother;
//max_child_extinction, 表示假如此节点没有被杀死,儿子节点可以任意杀死的情况下最长寿命。按照题目,可知只有一个孩子的全家被杀,而其他孩子不被杀,但是其他孩子的孩子能够杀死
//dp, 符合题意的,此节点被杀死的最长寿命
//extinction, 以此节点为根的子树的全家死光的时间
//kill, 杀死这个节点需要多少时间
int max_child_extinction,dp,extinction,kill;
void init()
{
father=child=brother=-1;
dp=extinction=max_child_extinction=0;
}
}node[MAX];
int input[MAX][2];
//杀死idx为根的子树的全家所需要的时间
int TotalFamilyExtinction(const int &idx)
{
if(node[idx].extinction)
return node[idx].extinction;
node[idx].extinction=node[idx].kill;
int child=node[idx].child;
while(child>-1)
{
node[idx].extinction+=TotalFamilyExtinction(child);
child=node[child].brother;
}
return node[idx].extinction;
}
//idx不杀死的情况下,以idx为根的子树最长能够存活的时间
int MaxChildExtinction(const int &idx)
{
if(node[idx].max_child_extinction)
return node[idx].max_child_extinction;
int child=node[idx].child;
//遍历每一种情况,即child全家被杀,其他child不被杀,但是其他child的child能够杀死
while(child>-1)
{
int tmp=TotalFamilyExtinction(child);
int sec_child=node[idx].child;
while(sec_child>-1)
{
if(sec_child!=child)
tmp+=MaxChildExtinction(sec_child);
sec_child=node[sec_child].brother;
}
node[idx].max_child_extinction=max(tmp, node[idx].max_child_extinction);
child=node[child].brother;
}
return node[idx].max_child_extinction;
}
int dfs(const int &idx)
{
if(node[idx].dp)
return node[idx].dp;
node[idx].dp = node[idx].kill;
int child=node[idx].child,sum=0;
while(child>-1)
{
sum+=MaxChildExtinction(child);
child=node[child].brother;
}
child=node[idx].child;
int ans=0;
while(child>-1)
{
ans=max(ans,TotalFamilyExtinction(child));
int sec_child=node[idx].child;
while(sec_child>-1)
{
if(child!=sec_child)
//dp为触动此节点idx被杀的最长需要时间
//此为本题的精髓,对于idx,dp必然是它一个孩子child全家被杀,另外一个孩子sec_child的dp,以及别的孩子不被杀死,但是别的孩子的孩子能够任意杀死的最长时间
ans=max(ans,sum-MaxChildExtinction(child)-MaxChildExtinction(sec_child)+TotalFamilyExtinction(child)+dfs(sec_child));
sec_child=node[sec_child].brother;
}
child=node[child].brother;
}
node[idx].dp+=ans;
return node[idx].dp;
}
int main(void)
{
#ifdef DEBUG
freopen("../stdin.txt","r",stdin);
freopen("../stdout.txt","w",stdout);
#endif
int n,father;
// scanf("%d",&ncase);
while(~scanf("%d",&n) && n)
{
for(int i=0;i<n;++i)
{
node[i].init();
scanf("%d",&node[i].kill);
}
for(int i=0;i<n;++i)
{
scanf("%d",&father);
node[i].father=father;
if(father==-1)
continue;
node[i].brother=node[father].child;
node[father].child=i;
}
int ans=0;
//注意可能存在森林的情况,除非是以n-1为根的树,否则别的树都可以全家杀死
for(int i=0;i<n-1;++i)
if(node[i].father==-1)
ans+=TotalFamilyExtinction(i);
ans+=dfs(n-1);
printf("%d\n",ans);
}
return 0;
}