双线性不确定模糊系统的鲁棒非脆弱控制策略
1. 引言
在控制理论领域,双线性不确定模糊系统的控制问题一直是研究的热点。对于这类系统,需要设计有效的控制器来保证系统的稳定性和抗干扰能力。本文将探讨使用PPDC概念、上$H_{\infty}$综合准则和LMI技术来解决双线性不确定模糊系统的鲁棒非脆弱稳定问题。
2. 相关技术引理
在证明后续定理之前,先回顾两个重要的技术引理。
- 引理1 :对于具有适当维度的矩阵$A$和$B$,以及正标量$\tau$,以下不等式成立:
$A^TB + B^TA \leq \tau A^TA + \tau^{-1} B^TB$ (4)
- 引理2 :给定矩阵$M = M^T$,$Q = Q^T$和具有适当维度的矩阵$L$,以下陈述是等价的:
$\begin{pmatrix}
M & * \
L^T & Q
\end{pmatrix} < 0$ 等价于 $\begin{cases}
Q < 0, M - LQ^{-1}L^T < 0 \
M < 0, Q - L^TM^{-1}L < 0
\end{cases}$ (5)
3. 鲁棒非脆弱稳定问题
在模糊控制器设计中,假设所研究系统的状态是可测量的,并且$m$对$(A_i, B_i)$是局部可控的。局部模糊控制器的控制规则$i$如下:
如果 $x_1$ 是 $M_{i1}(x_1)$ 并且 $\cdots$ 并且 $x_k$ 是
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



