数字识别
liu_coding
让CSDN记录下我技术成长的点点滴滴.
展开
-
4 机器学习实践之手写数字识别- 神经网络识别
在 初步特征选择及线性识别篇中提到机器学习算法输入数据分为原始数据,特征工程(人工选择特征)及深度学习(机器自己计算)。 在前面采用了特征工程的方案,识别率也在85%左右。 识别率不是很高,这跟特征工程选择的工程不全有关,继续选择各种工程会比较麻烦,以后有机会再细研究。 之后打算从原始数据输入及深度学习方面着手来解决这个手写数字识别功能。 接下去的过程中主要功能都将尽量采用自己编写原创 2016-07-28 22:38:33 · 1779 阅读 · 0 评论 -
2. 机器学习实践之手写数字识别 - 初步特征选择及线性识别
对测试集数据(train.csv)进行简单特征分析,并进行简单线性回归识别。原创 2016-06-23 13:01:52 · 4515 阅读 · 1 评论 -
5 机器学习实践之手写数字识别 - 最终实现版本(97%识别率)
采用多层神经网络识别,识别率到达了97%,完成了预期目标。自己的手写识别项目也就先告一段落了。具体请看http://blog.csdn.net/net_wolf_007/article/details/52121784 BP神经网络python简单实现2(比较高效版)原创 2016-08-04 19:16:18 · 1077 阅读 · 0 评论 -
BP神经网络python简单实现2(性能优化)
这一版本主要是对 http://blog.csdn.net/net_wolf_007/article/details/52055718 实现的版本进行优化上一版本主要是根据理论知识实现简单版本,步聚比较清晰。里面存在严重的性能问题,对激活函数的扩展问题及不能批量训练等主要问题。性能上在 http://blog.csdn.net/net_wolf_007/article/details/52原创 2016-08-04 19:11:31 · 4548 阅读 · 2 评论 -
6 机器学习实践之手写数字识别-卷积神经网络实现
感谢 以下四篇文章,让我比较深刻了解了卷积神经网络CNN 卷积神经网络推导和实现 http://blog.csdn.net/zouxy09/article/details/9993371c++ 实现卷积神经网络 http://www.codeproject.com/Articles/16650/Neural-Network-for-Recognition-of-Handwritten-原创 2016-08-18 17:39:27 · 2522 阅读 · 1 评论