数学
netcaoniao
这个作者很懒,什么都没留下…
展开
-
向量内积(点乘)和外积(叉乘)概念及几何意义
向量的内积(点乘)定义概括地说,向量的内积(点乘/数量积)。对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,如下所示,对于向量a和向量b:a和b的点积公式为:这里要求一维向量a和向量b的行列数相同。注意:点乘的结果是一个标量(数量而不是向量)定义:两个向量a与b的内积为 a·b = |a||b|cos∠(a, b),特别地,0·a =a·0 = 0...转载 2019-05-30 13:26:29 · 9616 阅读 · 0 评论 -
矩阵的迹及其一些定理证明
再写最小二乘法多元线性回归矩阵求导的时候用到了矩阵的迹和一些定理,特此在这里推导下矩阵迹的定义:一个nxn矩阵A的迹是指A主对角线上各元素的总和,记做tr(A)定理: tr(AB) = tr(BA)定理: 证明如下定理: 证明如下:...原创 2019-05-28 17:26:51 · 15424 阅读 · 5 评论 -
关于熵的定义的理解
转载 2019-06-27 16:14:03 · 1388 阅读 · 0 评论 -
证明余弦距离不是一个严格定义的距离
原创 2019-07-14 23:13:14 · 831 阅读 · 0 评论