Storm 从入门到精通 第二十六讲 Storm 批处理事务 - 多PartitionedTransaction(Base) 【实战运行】《Getting Started With Storm》

上一讲 我们讲过了 BaseTransactionalSpout 如何实现 Tweet Transactional Topology, 这讲使用多Partition redis。

对一个spout来说,从一个分区集合中读取批次是很普通的。接着这个例子,你可能有很多redis数据库,而tweets可能会分别保存在这些redis数据库里。通过实现IPartitionedTransactionalSpout,Storm提供了一些工具用来管理每个分区的状态并保证重播的能力。

1. TweetsPartitionRedis 采用Jedis[]模拟多个分区

package com.john.learn.storm.transaction.tweets.analytics.redis;

import java.math.BigInteger;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;

import org.apache.storm.shade.org.apache.commons.lang.StringUtils;
import org.apache.storm.utils.Utils;

import com.john.learn.storm.transaction.tweets.analytics.redis.bolt.TweetRedisCommiterBolt;
import com.john.learn.storm.transaction.tweets.analytics.redis.spout.TransactionMetadata;
import com.john.learn.storm.transaction.tweets.analytics.redis.spout.TweetsPartitionedTransactionalSpoutCoordinator;

import clojure.main;
import redis.clients.jedis.Jedis;

public class TweetsPartitionRedis {

	public static final String NEXT_READ_POSTION = "Tweets.Redis.NEXT_READ_POSTION";

	public static final String NEXT_WRITE_POSTION = "Tweets.Redis.NEXT_WRITE_POSTION";

	public static final int Redis_Partition_Number = 4;

	private Jedis[] jedis;

	public TweetsPartitionRedis(String hostName, int port, String password) {

		// 模拟多个Redis , 此处使用Redis Databases
		jedis = new Jedis[Redis_Partition_Number];

		for (int i = 0; i < Redis_Partition_Number; i++) {

			Jedis _jedis = new Jedis(hostName, port, 10000);

			if (!StringUtils.isEmpty(password)) {

				_jedis.auth(password);
			}

			_jedis.select(i);

			jedis[i] = _jedis;
		}

	}

	public TweetsPartitionRedis(String hostName, int port) {

		this(hostName, port, null);
	}

	public List<String> getMessages(int partition, long from, int quantity) {

		if (quantity == 0) {

			return Collections.EMPTY_LIST;
		}

		Jedis jedis = this.getJedis(partition);

		String[] keys = new String[quantity];

		for (int i = 0; i < quantity; i++) {

			keys[i] = MESSAGE_ID_KEY + "." + (from + i);
		}

		return jedis.mget(keys);
	}

	public String get(int partition, String key) {

		Jedis jedis = this.getJedis(partition);

		return jedis.get(key);
	}

	public void close() {

		for (Jedis _jedis : jedis) {
			try {
				_jedis.disconnect();

			} catch (Exception e) {

			}
		}

	}

	public int getRedisPartition() {
		return this.jedis.length;
	}

	public void clear() {

		for (Jedis _jedis : jedis) {
			String[] keys = _jedis.keys("Tweets.*").toArray(new String[0]);

			if (keys.length > 0) {
				_jedis.del(keys);
			}
			_jedis.del(NEXT_WRITE_POSTION);
			_jedis.del(NEXT_READ_POSTION);
			_jedis.del(TweetRedisCommiterBolt.LAST_COMMITED_TRANSACTION);
		}

	}

	public void addMessage(int partition, String message) {

		Jedis jedis = this.getJedis(partition);

		long index = jedis.incr(NEXT_WRITE_POSTION);

		jedis.set(MESSAGE_ID_KEY + "." + index, message);

	}

	public Jedis getJedis(int partition) {

		return this.jedis[partition % this.jedis.length];
	}

	public long getNextWrite(int partition) {

		Jedis jedis = this.getJedis(partition);

		String position = jedis.get(NEXT_WRITE_POSTION);

		if (position == null) {

			return 1;
		}

		return Long.valueOf(position) + 1;
	}

	public long getNextRead(int partition) {

		Jedis jedis = this.getJedis(partition);

		String position = jedis.get(NEXT_READ_POSTION);

		if (position == null) {
			return 1;
		}

		return Long.valueOf(position);
	}

	public void setNextRead(int partition, long position) {

		Jedis jedis = this.getJedis(partition);

		jedis.set(NEXT_READ_POSTION, String.valueOf(position));
	}

	public long getAvailableToRead(int partition, long current) {

		long items = getNextWrite(partition) - current;

		return items > 0 ? items : 0;
	}

	/**
	 * 模拟继续发送
	 * 
	 * @param args
	 */
	public static void main2(String[] args) throws InterruptedException {

		TweetsPartitionRedis tweetsRedis = new TweetsPartitionRedis("127.0.0.1", 6379, "test");

		tweetsRedis.clear();

		int maxCount = 10;

		int count = 0;

		int partition = 0;

		while (count < maxCount) {

			for (int i = 0; i < 100; i++) {

				long tx = System.currentTimeMillis();

				tweetsRedis.addMessage(partition++,
						"@John @alex 3. Apache #Storm# is a free and open source distributed #realtime# #computation# system.");

			}

			count++;
		}

		for (String key : tweetsRedis.getJedis(0).keys("Tweets.Redis.*.Frequency")) {

			System.out.println("-------------" + key + "-------------");
			System.out.println(tweetsRedis.getJedis(0).hgetAll(key));
		}

	}

	public static void main(String[] args) {

		TweetsPartitionRedis tweetsRedis = new TweetsPartitionRedis("127.0.0.1", 6379, "test");

		// 你可以清空数据,从来
		// tweetsRedis.clear();

		int partition = 0;

		tweetsRedis.addMessage(partition++, "Hi @Tom @Simith 1. I want to #USA# and #Hometown# city.");

		tweetsRedis.addMessage(partition++, "Hi @John @david @vivian 2. I want to #China# and #BeiJing# city.");
		tweetsRedis.addMessage(partition++,
				"@John @alex 3. Apache #Storm# is a free and open source distributed #realtime# #computation# system.");
		tweetsRedis.addMessage(partition++, "Hi @david @vivian 4. I want to #China# and #BeiJing# city.");

		System.out.println("------------- Test TweetsTransactionalSpoutCoordinator Start-------------");

		// TweetsTransactionalSpoutCoordinator transactionalSpoutCoordinator = new
		// TweetsTransactionalSpoutCoordinator();
		//
		// TransactionMetadata transactionMetadata = null;
		//
		// while (transactionalSpoutCoordinator.isReady()) {
		//
		// transactionMetadata =
		// transactionalSpoutCoordinator.initializeTransaction(BigInteger.valueOf(1),
		// transactionMetadata);
		//
		// System.out.println("SpoutCoordinator Initialize Transaction Meta: " +
		// transactionMetadata);
		//
		// }

		System.out.println("------------- Test TweetsTransactionalSpoutCoordinator End-------------");

	}

	private static final String MESSAGE_ID_KEY = "Tweets.Message";

}

2. TweetsPartitionedTransactionalSpout  

package com.john.learn.storm.transaction.tweets.analytics.redis.spout;

import java.util.Map;

import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BasePartitionedTransactionalSpout;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.topology.base.BaseTransactionalSpout;
import org.apache.storm.transactional.ITransactionalSpout;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Values;

import com.john.learn.storm.transaction.tweets.analytics.redis.TweetsPartitionRedis;

public class TweetsPartitionedTransactionalSpout extends BasePartitionedTransactionalSpout<TransactionMetadata> {

	private static final long serialVersionUID = 1L;

	@Override
	public Coordinator getCoordinator(Map config, TopologyContext context) {

		return new TweetsPartitionedTransactionalSpoutCoordinator();
	}

	@Override
	public Emitter<TransactionMetadata> getEmitter(Map config, TopologyContext context) {

		return new TweetsPartitionedTransactionalSpoutEmitter();
	}

	@Override
	public void declareOutputFields(OutputFieldsDeclarer fieldsDeclarer) {

		/**
		 * Refer to Emitter collector.emit(new Values(transactionAttempt,
		 * String.valueOf(tweetId), tweet));
		 */

		fieldsDeclarer.declare(new Fields("txid", "tweetId", "tweet"));
	}

	@Override
	public Map<String, Object> getComponentConfiguration() {

		return null;
	}

	private SpoutOutputCollector collector;

}

3.  TweetsPartitionedTransactionalSpoutCoordinator

package com.john.learn.storm.transaction.tweets.analytics.redis.spout;

import java.math.BigInteger;

import org.apache.storm.transactional.partitioned.IPartitionedTransactionalSpout.Coordinator;

import com.john.learn.storm.transaction.tweets.analytics.redis.TweetsPartitionRedis;

public class TweetsPartitionedTransactionalSpoutCoordinator implements Coordinator {

	public TweetsPartitionedTransactionalSpoutCoordinator() {
		this.tweetsRedis = new TweetsPartitionRedis("127.0.0.1", 6379, "test");
	}

	@Override
	public void close() {

		tweetsRedis.close();
	}

	@Override
	public boolean isReady() {
		
		//check 是否还有新的数据
		for (int i = 0; i < numPartitions(); i++) {

			if(tweetsRedis.getAvailableToRead(i, tweetsRedis.getNextRead(i))>0) {
				
				return true;
			}
		}

		return false;
	}

	@Override
	public int numPartitions() {

		return TweetsPartitionRedis.Redis_Partition_Number;
	}

	private transient TweetsPartitionRedis tweetsRedis;

}

在这个例子里,协调器很简单。numPartitions方法,告诉Storm一共有多少分区。而且你要注意,不要返回任何元数据。对于IPartitionedTransactionalSpout,元数据由分发器直接管理。

4. TweetsPartitionedTransactionalSpoutEmitter

package com.john.learn.storm.transaction.tweets.analytics.redis.spout;

import java.math.BigInteger;

import org.apache.storm.coordination.BatchOutputCollector;
import org.apache.storm.shade.org.apache.commons.lang.StringUtils;

import com.john.learn.storm.transaction.tweets.analytics.redis.TweetsPartitionRedis;

import org.apache.storm.transactional.TransactionAttempt;
import org.apache.storm.transactional.partitioned.IPartitionedTransactionalSpout.Emitter;
import org.apache.storm.tuple.Values;

public class TweetsPartitionedTransactionalSpoutEmitter implements Emitter<TransactionMetadata> {

	public TweetsPartitionedTransactionalSpoutEmitter() {

		this.tweetsRedis = new TweetsPartitionRedis("10.10.103.188", 6379, "UATRedisAuth");

	}

	@Override
	public void emitPartitionBatch(TransactionAttempt transactionAttempt, BatchOutputCollector collector, int partition,
			TransactionMetadata metadata) {

		if (metadata.quantity <= 0) {

			return;
		}

		long tweetId = metadata.from;

		for (String tweet : tweetsRedis.getMessages(partition, metadata.from, metadata.quantity)) {

			if (StringUtils.isEmpty(tweet)) {
				continue;
			}

			collector.emit(new Values(transactionAttempt, String.valueOf(tweetId), tweet));

			tweetId++;
		}

	}

	@Override
	public TransactionMetadata emitPartitionBatchNew(TransactionAttempt transactionAttempt,
			BatchOutputCollector batchOutputCollector, int partition, TransactionMetadata lastPartitioonMeta) {

		long nextRead = 0;

		if (lastPartitioonMeta == null) {
			nextRead = tweetsRedis.getNextRead(partition);
		} else {
			nextRead = lastPartitioonMeta.from + lastPartitioonMeta.quantity;
			// 非常巧妙,保存上一次数据位置, 如果emitPartitionBatch 调用失败,将会重新读取数据
			tweetsRedis.setNextRead(partition, nextRead);
		}

		long quantity = tweetsRedis.getAvailableToRead(partition, nextRead);

		quantity = Math.min(quantity, TRANSACTION_MAX_SIZE);

		TransactionMetadata metadata = new TransactionMetadata(nextRead, (int) quantity);

		emitPartitionBatch(transactionAttempt, batchOutputCollector, partition, metadata);

		return metadata;
	}

	@Override
	public void close() {

		tweetsRedis.close();
	}

	private transient TweetsPartitionRedis tweetsRedis;

	private static final int TRANSACTION_MAX_SIZE = 1000;

}

这里有两个重要的方法,emitPartitionBatchNew 和 emitPartitionBatch。对于emitPartitionBatchNew,从Storm接收分区参数,该参数决定应该从哪个分区读取批次。在这个方法中,决定获取哪些tweets,生成相应的元数据对象,调用emitPartitionBatch,返回元数据对象,并且元数据对象会在方法返回时立即保存到zookeeper

Storm会为每一个分区发送相同的事务ID,表示一个事务贯穿了所有数据分区。通过emitPartitionBatch读取分区中的tweets,并向拓扑分发批次。如果批次处理失败了,Storm将会调用emitPartitionBatch利用保存下来的元数据重复这个批次。

5. TweetRedisCommiterBolt

package com.john.learn.storm.transaction.tweets.analytics.redis.bolt;

import java.util.HashMap;
import java.util.Map;

import org.apache.storm.coordination.BatchOutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseTransactionalBolt;
import org.apache.storm.transactional.ICommitter;
import org.apache.storm.transactional.TransactionAttempt;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;

import com.john.learn.storm.transaction.tweets.analytics.redis.TweetsPartitionRedis;

import redis.clients.jedis.Transaction;

public class TweetRedisCommiterBolt extends BaseTransactionalBolt implements ICommitter {

	@Override
	public void prepare(Map config, TopologyContext context, BatchOutputCollector collector,
			TransactionAttempt transactionAttempt) {

		this.transactionAttempt = transactionAttempt;

		sourceCounterMapCounters = new HashMap<>();

		// 避免重复初始化redis 连接
		if (tweetsRedis == null) {

			this.tweetsRedis = new TweetsPartitionRedis("127.0.0.1", 6379, "test");

		}

		hasMessage = false;

	}

	/**
	 * topologyBuilder.setBolt("Users-Splitter", new UserSplitterBolt(), 4)
	 * .shuffleGrouping("TweetsTransactionalSpout");
	 * 
	 * topologyBuilder.setBolt("TopicTags-Splitter", new TopicTagSplitterBolt(), 4)
	 * .shuffleGrouping("TweetsTransactionalSpout");
	 * 
	 * topologyBuilder.setBolt("User-TopicTag-Join", new UserTopicTagJoinBolt(), 1)
	 * .fieldsGrouping("Users-Splitter", "Users", new Fields("tweetId"))
	 * .fieldsGrouping("TopicTags-Splitter", "TopicTags", new Fields("tweetId"));
	 * 
	 */
	@Override
	public void execute(Tuple tuple) {

		String source = tuple.getSourceComponent();

		if (source.equalsIgnoreCase("Users-Splitter")) {

			count("Tweets.Redis.Users.Frequency", tuple.getStringByField("user"), 1);

			return;
		}

		if (source.equalsIgnoreCase("TopicTags-Splitter")) {

			count("Tweets.Redis.TopicTags.Frequency", tuple.getStringByField("topicTag"), 1);

			return;
		}

		if (source.equalsIgnoreCase("User-TopicTag-Join")) {

			count("Tweets.Redis.UserTopicTags.Frequency",
					tuple.getStringByField("user") + ":" + tuple.getStringByField("topicTag"),
					tuple.getIntegerByField("count"));
		}

	}

	private void count(String sourceCounterMapKey, String counterTag, Integer count) {

		hasMessage = true;

		if (!sourceCounterMapCounters.containsKey(sourceCounterMapKey)) {

			sourceCounterMapCounters.put(sourceCounterMapKey, new HashMap<>());
		}

		Map<String, Integer> counters = sourceCounterMapCounters.get(sourceCounterMapKey);

		Integer prevTotalCount = counters.get(counterTag);

		if (prevTotalCount == null) {

			prevTotalCount = 0;
		}

		counters.put(counterTag, prevTotalCount + count);

	}

	@Override
	public void finishBatch() {

		String lastCommitTransaction = tweetsRedis.get(0, LAST_COMMITED_TRANSACTION);

		System.out.println(
				"this.transactionAttempt.getTransactionId() ======== " + this.transactionAttempt.getTransactionId());
		System.out.println("lastCommitTransaction ===== " + lastCommitTransaction);
		
		if(hasMessage==false) {
			
			return;
		}

		if (String.valueOf(this.transactionAttempt.getTransactionId()).equals(lastCommitTransaction)) {

			return;
		}

		Transaction multi = tweetsRedis.getJedis(0).multi();

		multi.set(LAST_COMMITED_TRANSACTION, String.valueOf(transactionAttempt.getTransactionId()));

		for (String sourceCounterKey : sourceCounterMapCounters.keySet()) {

			Map<String, Integer> sourceTotalMap = sourceCounterMapCounters.get(sourceCounterKey);

			for (String counterTag : sourceTotalMap.keySet()) {

				multi.hincrBy(sourceCounterKey, counterTag, sourceTotalMap.get(counterTag));
			}

		}

		multi.exec();

		printResult();

	}

	private void printResult() {

		System.out.println("-------------printResult-------------");

		for (String key : tweetsRedis.getJedis(0).keys("Tweets.Redis.*.Frequency")) {

			System.out.println("-------------" + key + "-------------");
			System.out.println(tweetsRedis.getJedis(0).hgetAll(key));
		}

	}

	@Override
	public void declareOutputFields(OutputFieldsDeclarer fieldsDeclarer) {

	}

	private Map<String, Map<String, Integer>> sourceCounterMapCounters;

	private TransactionAttempt transactionAttempt;

	private static TweetsPartitionRedis tweetsRedis;

	private boolean hasMessage;

	public static final String LAST_COMMITED_TRANSACTION = "Tweets.Redis.LAST_COMMIT";

	private static final long serialVersionUID = 1L;
}

注意:我们使用Redis中 database=0数据库 保存最终的结果。 hasMessage 用于控制 是否有数据需要处理。

如果 TweetsPartitionedTransactionalSpoutCoordinator 中 isReady() 方法没有增加是否还有数据的检查,始终返回true的话,这里最好使用hasMessage 提高系统性能。

6. TweetsPartitionedTransactionalTopology

package com.john.learn.storm.transaction.tweets.analytics.redis;

import java.text.SimpleDateFormat;

import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.transactional.TransactionalTopologyBuilder;
import org.apache.storm.tuple.Fields;
import org.apache.storm.utils.Utils;

import com.john.learn.storm.transaction.tweets.analytics.redis.bolt.TopicTagSplitterBolt;
import com.john.learn.storm.transaction.tweets.analytics.redis.bolt.TweetRedisCommiterBolt;
import com.john.learn.storm.transaction.tweets.analytics.redis.bolt.UserSplitterBolt;
import com.john.learn.storm.transaction.tweets.analytics.redis.bolt.UserTopicTagJoinBolt;
import com.john.learn.storm.transaction.tweets.analytics.redis.spout.TweetsPartitionedTransactionalSpout;

public class TweetsPartitionedTransactionalTopology {

	public static void main(String[] args) {

		TransactionalTopologyBuilder topologyBuilder = new TransactionalTopologyBuilder("TweetsTransactionalTopology",
				"TweetsTransactionalSpout", new TweetsPartitionedTransactionalSpout());

		topologyBuilder.setBolt("Users-Splitter", new UserSplitterBolt(), 4)
				.shuffleGrouping("TweetsTransactionalSpout");

		topologyBuilder.setBolt("TopicTags-Splitter", new TopicTagSplitterBolt(), 4)
				.shuffleGrouping("TweetsTransactionalSpout");

		topologyBuilder.setBolt("User-TopicTag-Join", new UserTopicTagJoinBolt(), 8)
				.fieldsGrouping("Users-Splitter", "Users", new Fields("tweetId"))
				.fieldsGrouping("TopicTags-Splitter", "TopicTags", new Fields("tweetId"));

		topologyBuilder.setBolt("Tweet-RedisCommiter", new TweetRedisCommiterBolt())
				.globalGrouping("User-TopicTag-Join").globalGrouping("Users-Splitter", "Users")
				.globalGrouping("TopicTags-Splitter", "TopicTags");

		//
		Config conf = new Config();

		LocalCluster cluster = new LocalCluster();

		cluster.submitTopology("TweetsTransactionalTopology", conf, topologyBuilder.buildTopology());

		// Utils.sleep(5000);
		//
		// cluster.killTopology("TiwtterReachTopology");
		//
		// cluster.shutdown();
	}
}

7. 运行结果

a. 先启动 TweetsPartitionedTransactionalTopology 中main 方法

b. 启动 TweetsPartitionRedis main 方法

	public static void main(String[] args) {

		TweetsPartitionRedis tweetsRedis = new TweetsPartitionRedis("127.0.0.1", 6379, "test");

		// 你可以清空数据,从来
		tweetsRedis.clear();

		int partition = 0;

		tweetsRedis.addMessage(partition++, "Hi @Tom @Simith 1. I want to #USA# and #Hometown# city.");

		tweetsRedis.addMessage(partition++, "Hi @John @david @vivian 2. I want to #China# and #BeiJing# city.");
		tweetsRedis.addMessage(partition++,
				"@John @alex 3. Apache #Storm# is a free and open source distributed #realtime# #computation# system.");
		tweetsRedis.addMessage(partition++, "Hi @david @vivian 4. I want to #China# and #BeiJing# city.");


	}

执行结果

-------------printResult-------------
-------------Tweets.Redis.UserTopicTags.Frequency-------------
{@alex:#computation#=1, @vivian:#Storm#=1, @Simith:#computation#=1, @Tom:#realtime#=1, @Tom:#China#=1, @david:#USA#=1, @alex:#China#=1, @John:#Hometown#=1, @alex:#Storm#=1, @david:#Hometown#=1, @Simith:#USA#=1, @vivian:#Hometown#=1, @Simith:#Storm#=1, @John:#computation#=1, @alex:#USA#=1, @alex:#realtime#=1, @david:#China#=1, @alex:#Hometown#=1, @Simith:#realtime#=1, @John:#China#=1, @John:#realtime#=1, @david:#realtime#=1, @david:#BeiJing#=1, @Simith:#Hometown#=1, @Tom:#computation#=1, @vivian:#realtime#=1, @Tom:#BeiJing#=1, @david:#computation#=1, @alex:#BeiJing#=1, @John:#BeiJing#=1, @vivian:#BeiJing#=1, @Tom:#USA#=1, @Tom:#Storm#=1, @Simith:#BeiJing#=1, @vivian:#China#=1, @vivian:#USA#=1, @John:#Storm#=1, @Simith:#China#=1, @vivian:#computation#=1, @david:#Storm#=1, @John:#USA#=1, @Tom:#Hometown#=1}
-------------Tweets.Redis.Users.Frequency-------------
{@david=2, @John=2, @vivian=2, @Tom=1, @Simith=1, @alex=1}
-------------Tweets.Redis.TopicTags.Frequency-------------
注释main 方法, 打开main2 方法 模拟继续发送


/**
	 * 模拟继续发送
	 * 
	 * @param args
	 */
	public static void main(String[] args) throws InterruptedException {

		TweetsPartitionRedis tweetsRedis = new TweetsPartitionRedis("127.0.0.1", 6379, "test");

		tweetsRedis.clear();

		int maxCount = 10;

		int count = 0;

		int partition = 0;

		while (count < maxCount) {

			for (int i = 0; i < 100; i++) {

				long tx = System.currentTimeMillis();

				tweetsRedis.addMessage(partition++,
						"@John @alex 3. Apache #Storm# is a free and open source distributed #realtime# #computation# system.");

			}

			count++;
		}

		for (String key : tweetsRedis.getJedis(0).keys("Tweets.Redis.*.Frequency")) {

			System.out.println("-------------" + key + "-------------");
			System.out.println(tweetsRedis.getJedis(0).hgetAll(key));
		}

	}

-------------printResult-------------
-------------Tweets.Redis.UserTopicTags.Frequency-------------
{@alex:#Storm#=289, @alex:#realtime#=289, @John:#realtime#=289, @alex:#computation#=289, @John:#computation#=289, @John:#Storm#=289}
-------------Tweets.Redis.Users.Frequency-------------
{@John=995, @alex=995}
-------------Tweets.Redis.TopicTags.Frequency-------------
{#computation#=995, #Storm#=995, #realtime#=995}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值