大数据与人工智能
文章平均质量分 86
大数据与人工智能
neu_nw2005
一名测试老兵,关注软件工程,敏捷精益,测试方法,DevOps
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
K-Means聚类
聚类轮廓系数(Silhouette Coefficient) 是衡量聚类结果质量的核心指标,通过综合样本在自身簇内的“紧凑度”和与邻近簇的“分离度”,量化评估聚类的合理性。原创 2025-11-09 10:26:28 · 171 阅读 · 0 评论 -
假设校验方法介绍
F值是组间方差与组内方差的比值,用于判断不同组之间是否存在显著差异:‘’‘mathF = \frac{\text{组间方差(MSB)}}{\text{组内方差(MSE)}} = \frac{SSB/(k-1)}{SSE/(n-k)}‘’’SSB(组间平方和):不同组均值与总体均值的差异平方和。SSE(组内平方和):组内数据与组均值的差异平方和。k:组数,n:总样本量。原创 2025-11-08 14:24:03 · 117 阅读 · 0 评论 -
损失函数与正则优化
损失函数用于评估预测值和真实值的差距,损失函数越小,模型越精准。原创 2025-09-27 00:06:54 · 916 阅读 · 0 评论
分享