自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 大厂大模型面试必备八股文(进阶篇)

《大厂NLP面试进阶指南》摘要:本文聚焦大厂NLP/LLM岗位核心考察点,涵盖RAG架构(含Faiss/ColBERT实现)、LangChain框架应用、训练优化(混合精度/DeepSpeed)、显存管理及Attention优化(FlashAttention等)。重点解析工程实践问题,如外挂知识库价值、Decoder并行化限制等,并提供代码示例与面试应答策略。建议通过HuggingFace等工具实践RAG系统搭建和混合精度调试,以提升工程落地能力。适合备战字节、阿里等大厂AI岗位的开发者参考。

2025-09-16 17:35:25 1106

原创 大厂大模型面试必备八股文(基础篇)

大模型面试核心要点解析 本文系统梳理了大模型技术面试的高频考点,涵盖Transformer架构、典型模型及常见问题解决方案。核心内容包括:1)Transformer的自注意力机制、多头注意力和缩放原理;2)BERT的MLM训练方法和LLaMA的优化设计;3)大模型幻觉、复读问题的RAG和采样策略应对方案。文章提供公式推导、代码示例和典型面试问答,强调理论与实践结合,建议通过开源项目实践深化理解,为算法岗/NLP工程师面试提供实用备考指南。

2025-09-16 17:32:32 728

原创 RAG技术的构建、搭建与企业应用

本文介绍了检索增强生成(RAG)技术,该技术通过结合外部知识检索与大语言模型生成,显著提升AI响应准确性。文章详细解析了RAG的构建原理(知识库、检索器、生成器三组件)、搭建步骤(环境准备到部署全流程)及企业应用场景(客服/知识管理/医疗金融)。通过Mermaid语法绘制的架构图、流程图和思维导图直观展示了关键技术。同时指出了RAG面临的检索精度、延迟等挑战及优化策略,展望了多模态RAG等未来发展方向,为AI从业者提供了实用指南。

2025-09-12 16:25:31 887

原创 大模型岗位面试经历与技巧:阿里、腾讯、字节跳动面经分享

本文分享了作者2025年上半年面试阿里达摩院、腾讯AILab和字节跳动火山引擎大模型岗位的经历。阿里重点考察算法理论和模型优化,腾讯注重工程落地和产品思维,字节强调系统设计和动手能力。作者总结了各公司的面试流程、典型问题及应对策略,并提供求职建议:加强算法基础(LeetCode中等题)、积累项目经验(模型微调/部署)、掌握面试技巧(STAR法则)。文章为准备大模型岗位的从业者提供了实用参考,突出不同企业对人才需求的差异。

2025-09-12 16:21:33 996

原创 看到一个很有意思的漫画,解析一下

摘要: Transformer模型凭借其创新的编码器-解码器结构和多头注意力机制,彻底改变了序列建模领域。编码器层通过自注意力和前馈网络提取输入特征,解码器层则利用掩码自注意力实现序列生成,而编码器-解码器注意力机制实现了跨序列的动态交互。该架构通过残差连接和层归一化优化训练,广泛应用于机器翻译、文本生成等任务。漫画以机器人形象生动展示了数据处理流程,直观呈现了Transformer的核心原理,为深度学习模型提供了高效灵活的解决方案。

2025-09-11 17:17:22 892

原创 DeepSeek的MLA:多头注意力机制的创新变体,记一次面试遇到的问题

本文介绍了Transformer中的多头注意力(MHA)机制及其变体,重点分析DeepSeek提出的多头潜注意力(MLA)。MHA通过并行计算多个注意力头捕捉信息,但存在计算和内存消耗大的问题。为此出现了MQA(共享KV)和GQA(分组共享KV)等优化方案。DeepSeek的MLA进一步采用低维潜空间压缩KV表示,结合LoRA技术,在保持性能的同时显著减少KV缓存需求。文章提供了MLA的PyTorch实现代码,并对比显示MLA在长序列任务中可降低40%内存使用,提升20-30%推理速度。这些优化对长文本处理

2025-09-11 17:06:51 1007

原创 大模型八股文的重要性

本文系统介绍了大模型技术及其应用。首先阐述了大模型的定义、特点及与传统模型的区别,重点分析了基于Transformer的架构及其核心组件。随后详细讲解了Transformer模型的技术原理,包括自注意力机制、多头注意力等关键技术。文章还探讨了大模型在自然语言处理中的应用场景,如机器翻译、文本摘要等,并提供了评估指标和优化方法。最后分享了实际开发经验,包括数据处理、模型训练等关键环节,以及应对大模型面试的建议,强调知识储备和项目实践的重要性。全文内容全面,对理解大模型技术及其应用具有重要参考价值。

2025-09-10 14:45:25 2121

原创 大模型小白成长指南:从 0 到 1 的学习路径

1. 什么是大模型?大模型全称 “大型预训练模型”,是指通过在海量数据上进行预训练,具备强大通用能力,可通过微调适配特定任务的 AI 模型。其核心特点是 “规模大”(参数数十亿至万亿级)、“能力强”(理解、生成、推理等多维度能力)、“泛化好”(跨领域适配性高)。2. 大模型的主要分类语言大模型:专注于自然语言处理,如 ChatGPT(对话)、GPT-4(多任务语言理解)、LLaMA(开源语言模型);视觉大模型。

2025-09-08 16:13:31 1013

原创 Java 面试八股文学习路径:从入门到上岸,保姆级指南

学习路径分为三个阶段:基础(数据类型、集合、异常等)、进阶(JVM、并发、数据库)和框架与项目(Spring、MyBatis等)。强调理解原理而非死记硬背,建议结合工具书和在线资源学习,并通过项目实践巩固知识点。文章指出八股文是考察核心能力的标准化框架,掌握后可提升面试通过率,同时在实际开发中少踩坑。最后提醒避免常见误区,建议定期复盘并坚持学习2-3个月。

2025-09-07 17:42:33 1377

原创 Java小白逆袭之路:超详细入门学习路径

本文系统介绍了Java编程语言的学习路径。首先阐述了Java的优势特性,包括跨平台能力、面向对象特性和丰富的类库框架。随后详细讲解了学习Java的基础准备,包括计算机基础知识、开发环境搭建和JDK配置。文章重点剖析了Java基础语法,涵盖数据类型、运算符、流程控制和数组等核心概念。在面向对象编程部分,深入讲解了类与对象、封装继承多态三大特性,以及接口与抽象类的区别。最后推荐了优质学习资源,包括经典书籍、在线课程和技术社区,并鼓励学习者通过项目实践和持续学习掌握Java技能。

2025-09-07 17:38:49 870

原创 Java 核心知识点全梳理:从基础到进阶的全面解析

本文系统梳理了Java编程语言的核心知识点,包括基础特性、核心概念和进阶问题。首先介绍了Java的面向对象编程、平台独立性和稳健性三大核心特性。然后详细解析了JDK/JRE/JVM的关系、Java与C++的区别、数据类型、面向对象四大特性(封装、继承、多态、抽象)以及接口与抽象类的区别。在进阶部分,重点讲解了异常处理、反射机制、泛型、序列化和并发编程等核心内容。最后精选了常见面试题,如equals()与==的区别、深拷贝与浅拷贝等。全文旨在帮助开发者夯实Java基础,提升开发效率并应对技术面试。

2025-09-06 03:38:53 1725

原创 Java 从入门到精通全攻略:分阶段学习路径 + 避坑指南

Java作为编程语言中的常青树,在后端开发、Android应用等领域占据核心地位。本文提供了系统化的Java学习路径:从基础语法到面向对象编程,再到高级特性、Web开发框架以及进阶方向。建议采用项目驱动学习法,结合开源参与和刻意练习,推荐《Java核心技术》等书籍和B站免费课程。特别提醒初学者避免跳过基础直接学框架、忽视代码规范等常见误区。通过分阶段实践和持续输出,学习者可以构建完整的Java知识体系。

2025-09-06 03:30:37 1020

原创 大模型实战:从理论到落地的全栈指南

大模型技术全栈解析:从基础理论到工程实践 本文系统梳理了大模型技术的全栈知识体系,涵盖基础理论、进阶模型、工程实践与扩展应用。基础理论篇详细介绍了机器学习三大任务类型、神经网络原理及训练优化技巧;进阶模型篇深入解析了CNN、Transformer等架构及其在大模型中的应用;工程实践篇重点探讨了微调方法、推理优化等关键技术;扩展应用篇展示了智能体等创新场景。文章还提供了实操案例和解决方案,帮助开发者快速掌握大模型开发全流程。

2025-08-28 14:09:09 898

原创 5分钟读懂LLM大模型

LLM大模型是当前人工智能领域的热点技术,它是一种基于深度学习的海量文本训练模型,具备强大的语言理解和生成能力。其核心采用Transformer架构,通过自注意力机制、多头注意力等组件实现高效语言处理。训练过程包括无监督学习(如掩码语言模型)和特定任务微调。LLM应用广泛,包括文本生成、机器翻译、代码辅助、教育辅导等领域,正深刻改变人们的工作生活方式。随着技术进步,LLM将持续推动各行业创新发展。

2025-08-28 14:00:42 1093

原创 探秘大模型:DeepSeek的崛起密码

大模型:人工智能的基石与DeepSeek的崛起 大模型凭借其庞大的参数规模、跨模态能力和通用性,正在重塑多个行业。DeepSeek作为中国AI领域的代表,凭借创新的算法架构(如混合专家模型MoE和多头潜在注意力MLA)、独特的强化学习训练策略和高效的推理优化技术,迅速在大模型竞争中崭露头角。上线仅10天便跻身全球AI产品第二,并对美国科技股市场产生显著冲击。 DeepSeek在自然语言处理、代码生成、数学推理等领域表现卓越,其成本优势(训练成本仅为ChatGPT的几十分之一)和技术差异化(跳过监督微调直接强

2025-08-27 14:54:43 870

原创 智元机器人(Agibot)面试经验分享 | 从面试到拒绝,聊聊我的经历

摘要:本文分享了作者参加智元机器人(Agibot)技术面试的经历,该公司专注于具身智能领域。面试由创始人稚晖君主导,重点考察了大模型技术基础,包括Transformer机制、BERT/GPT比较等核心问题。虽然最终未获录用,但作者对公司的技术方向和创新氛围给予高度评价。作为一家初创企业,智元机器人在具身智能领域展现出巨大潜力,其将AI与机器人结合的发展战略值得关注。这次面试经历让作者对新兴AI公司的技术要求和行业前景有了更深入的认识。

2025-08-27 14:33:49 1564

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除