图机器学习
graph machine learning techniques
WineChocolate
Obsessed is just a word the lazy used to describe the dedicated
展开
-
图机器学习 - cs224w Lecture 16 - 图神经网络的局限性
文章目录Capturing Graph StructureGraph Isomorphism NetworkVulnerability to Noise转载请注明:这一个 Lecture 前还有一个关于 Knowledge Graph 的 slide 我打算跳过,因为 KG 我现在还没有深入研究,可能以后有空会系统地写一个系列,因此现在就不要先入为主了。后面也还有一个 slide 讲 GNN 的应用的,其实就是将前面的内容投入实际场景,没有太多新的 technique,因此也就不整理了。而这一个 Le原创 2020-06-08 19:04:05 · 807 阅读 · 0 评论 -
图机器学习 - cs224w Lecture 15 - 网络演变
文章目录MacroscopicForest Fire ModelMicroscopicTemporal NetworkTemporal PageRankMesoscopic转载请注明:网络的形成不是一蹴而就的,就像一个人的人际关系并非出生就是完整的,而是在成长过程中通过接触他人结识新朋友而逐步形成的。以时间为变量,网络结构的变化过程就是我们需要研究的。这个 Lecture 以三个层次进行研究讨论,分别是macro level: models, densificationmeso level: mo原创 2020-06-03 11:03:45 · 788 阅读 · 0 评论 -
图机器学习 - cs224w Lecture 13 & 14 - 影响力最大化 & 爆发检测
文章目录Influence MaximizationPropagation ModelsLinear Threshold ModelIndependent Cascade ModelGreedy Hill Climbing AlgorithmSketch-Based AlgorithmOutBreak DetectionCELF: Cost-Effective Lazy Forward-selectionLazy EvaluationData Dependent BoundInfluence Maximi原创 2020-05-29 19:16:30 · 1382 阅读 · 3 评论 -
图机器学习 - cs224w Lecture 11 & 12 - 网络传播
文章目录Decision Based Model of DiffusionLarge CascadesExtending the Model我们研究网络,不仅是为了提取网络结构的特征或对节点进行分类。更多的是为了研究网络上的传播过程,比如消息在社交网络中的传播,以及传染病在人群中的传播。而现实世界中的网络是不会显式地表现出传播过程的,而是通过时间先后的关系展示出传播性的。Decision Based Model of Diffusion现在有两种选择 A 和 B,一个人现在要决定要么选 A 要么选 B原创 2020-05-24 19:07:47 · 640 阅读 · 0 评论 -
图机器学习 - cs224w Lecture 10 - PageRank
文章目录PageRankProblemsPersonalized PageRank将互联网视为图的话,它必定存在结构上的一些规律。首先回顾一下强连通子图 (strongly connected component, SCC),如果一个有向图的子图内任意节点可以互相到达,那么这就是一个 SCC。而包含节点 A 的 SCC 必满足 SCC(A)=Out(A)∩In(A)SCC(A)=Out(A)\cap In(A)SCC(A)=Out(A)∩In(A) 其中 Out 和 In 分别表示从 A 出发能到达的点以原创 2020-05-20 12:17:46 · 484 阅读 · 0 评论 -
图机器学习 - cs224w Lecture 8 & 9 -图神经网络 及 深度生成模型
文章目录Graph Neural NetworkGraph Convolutional NetworkGraphSAGEGraph Attention NetworkTipsDeep Generative Models for GraphsGraphRNN: a Auto-Regressive ModelsTractabilityGraph Neural Network这一课主要讲了如何用深度学习的方法来做 embedding,也就是最近很火的 Graph Neural Network 图神经网络。之所原创 2020-05-16 15:43:46 · 855 阅读 · 0 评论 -
图机器学习 - cs224w Lecture 7 - 节点的表示
文章目录Node EmbeddingRandom Walknode2vecTransEEmbedding Entire GraphAnonymous WalkReferenceNode Embedding上一讲介绍了对图中节点进行分类的方法,涉及了节点自身的特征以及图的结构信息。然而当特征这个概念出现就说明需要做特征工程,这是相当费时费力的工作。最后的结果还不一定理想,因为或多或少会丢失一些信...原创 2020-04-15 15:38:33 · 730 阅读 · 0 评论 -
图机器学习 - cs224w Lecture 6 - 消息传递 与 节点分类
文章目录Node ClassificationProbabilistic Relational ClassifierIterative ClassificationBelief Propagation前面几课时讲的主要是图的性质、一些基本结构和针对结构的算法。而从现在开始就要涉及到具体的 learning 任务了。这一讲要解决的主要问题是:给定一个网络以及网络里一部分节点的标签,我们如何为其它节...原创 2020-04-09 14:38:42 · 1004 阅读 · 0 评论 -
图机器学习 - cs224w Lecture 5 - 谱聚类
文章目录Spectral ClusteringGraph Partitioningddd-Regular GraphMotif-Based Spectral ClusteringSpectral Clustering前面的课程说到了 community detection 并介绍了两种算法。这次来说说另外一类做社区聚类的算法,谱聚类。这种算法一般分为三个步骤pre-processing: ...原创 2020-04-07 20:06:18 · 943 阅读 · 0 评论 -
图机器学习 - cs224w Lecture 4 - 社区结构
Community之前讲到了网络中节点扮演不同角色,而角色这个概念和社区互补,那么接下来就讨论下社区这个概念。以找工作为例,曾经学者 Granovetter 调查过人们的工作是由谁介绍的,结果很意外。大部分人的工作是由“熟人”,或者说关系并不是很密切的人介绍的。然后 Granovetter 分析后提出了他的解释:这种“熟人”可能涉及整个社交网络很广泛的区域 (普遍来说通过 6.66.66.6 ...原创 2020-04-05 16:08:17 · 818 阅读 · 0 评论 -
图机器学习 - cs224w Lecture 3 - Motif、Graphlet 及 结构性角色
文章目录Network MotifsConfiguration ModelGraphletsHow to Find Motifs and GraphletsStructural Roles大量真实网络都有一个规律,即这些网络都是由一些 building block 构成,类似 Kronecker 图有大量的重复结构。而我们需要一种度量方式来衡量某个结构在图中的显著性。因此需要引入 motif 和...原创 2020-04-03 14:57:40 · 4286 阅读 · 0 评论 -
图机器学习 - cs224w Lecture 1 & 2 - 图的性质及随机图
文章目录Lecture 1: IntroductionLecture 2: Properties and Random GraphDegree DistributionPath LengthClustering CoefficientConnectivityErdos-Renyi Random Graph ModelSmall-World ModelKronecker Graph Model最近...原创 2020-04-02 20:28:55 · 1200 阅读 · 0 评论