每日一解 数组中的第K个最大元素

本篇博客介绍如何在未排序的数组中高效找到第K个最大的元素,避免使用O(nlogn)的时间复杂度。通过使用最小堆(优先队列)的数据结构,在O(n)的时间复杂度内解决此问题。给出的C++代码示例利用了优先队列的特性来创建小顶堆,实现了动态维护K个最大元素并找出第K大的元素。
摘要由CSDN通过智能技术生成

题目 数组中的第K个最大元素

在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

示例 1:
输入: [3,2,1,5,6,4] 和 k = 2
输出: 5

示例 2:
输入: [3,2,3,1,2,4,5,5,6] 和 k = 4
输出: 4

说明:
你可以假设 k 总是有效的,且 1 ≤ k ≤ 数组的长度。

思路

如果先排序在找到第K个最大的元素,那么时间复杂度很明显是O(nlogn)。那就说明我们需要实现的算法至少应该比O(nlogn)更快,比如O(n)。
既然是寻找第K个元素,那么自然而然的,我就想到使用一个数组去维护一个当前最大的K个元素,当遍历数组完成的时候,取出该数组最小的那个元素就可以了。
那么结合这个思路,能采用的最佳数据结构就是最小值堆,维护一个最小值堆,最小值堆的堆顶是堆里的最小元素。那么当我们遇到比堆顶元素更大的值的时候,就把对顶元素pop出去,加入新的元素,重新建堆即可。
c++中优先队列就满足这个条件,它是使用堆实现的,注意参数使用greater <int> 就可以让优先队列创造一个小顶堆,实现目标。

代码实现

class Solution {
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值