高精度是期中后一个集中练习专门查考的专题,但是往年的真题中这部分的知识涉及不多,如果考前时间紧张可考虑跳过,但是本身难度不大,只要理解了原理所有类型的题目就都会做了。
基本思想:因为数据太大,不再使用int存储输入的数据,而是保存为字符串类型,模拟人工竖式进行加减乘除运算
1、大整数加法:
#include <iostream>
#include <cstring>
using namespace std;
int x[205], y[205], ans[205];
int main() {
int n;
cin >> n;
while (n--) {
memset(x, 0, sizeof(x));
memset(y, 0, sizeof(y));
memset(ans, 0, sizeof(ans));
string a, b;
cin >> a >> b;
int lena = a.size(), lenb = b.size();
// 大整数加法是从个位数开始的,对于字符串来说就是从最后一位开始,所以我们把字符串逆序
for (int i = 0; i < lena; i++) x[i] = a[lena - i - 1] - '0';
for (int i = 0; i < lenb; i++) y[i] = b[lenb - i - 1] - '0';
for (int i = 0; i < max(lena, lenb); i++) {
ans[i] += (x[i] + y[i]); // 注意这里是+=而不是=,因为可能有前面的进位
if (ans[i] >= 10) {
ans[i] -= 10;
ans[i + 1]++;
}
}
// 去除前导0
int pos = max(lena, lenb);
while (ans[pos] == 0) pos--;
for (int i = pos; i >= 0; i--) cout << ans[i];
}
return 0;
}
【变式】任意K进制长纯小数加法运算
【题目分析】与大整数加法不同的是,我们人工在进行小数运算就是从前往后进行加法的。因为是K进制,所以每次是遇K进1,让ans[i-1]++,不再是ans[i+1]++了。需要注意的一点是是否会进位到整数位,别忘了即可。
【代码实现】
#include <iostream>
#include <cstring>
using namespace std;
int k;
char a[110], b[110];
int a1[110], b1[110];
int ans[110];
int main() {
int n;
cin >> n;
while (n--) {
cin >> k;
char c1, c2;
cin >> c1 >> c2 >> a >> c1 >> c2 >> b;
int lena = strlen(a), lenb = strlen(b);
// 初始化为0
for (int i = 0; i <= max(lena, lenb); i++) a1[i] = 0, b1[i] = 0, ans[i] = 0;
for (int i = 0; i < lena; i++) a1[i] = a[i] - '0'; // 这里就不需要逆序了
for (int i = 0; i < lenb; i++) b1[i] = b[i] - '0';
for (int i = 0; i < max(lena, lenb); i++) ans[i] += a1[i] + b1[i];
// 处理进位问题
for (int i = max(lena, lenb) - 1; i >= 1; i--) {
if (ans[i] >= k) {
ans[i] -= k;
ans[i - 1]++; // 如果i=0可能出现ans[-1],所以i的下限就到1,i=0单独处理
}
}
if (ans[0] >= k) {
cout << "1.";
ans[0] -= k;
}
else cout << "0.";
int l = max(lena, lenb) - 1;
while (ans[l] == 0 && l >= 0) l--; // 去掉末尾的0
for (int i = 0; i <= l; i++) cout << ans[i];
cout << endl;
}
return 0;
}
2、大整数除法:
#include <iostream>
#include <cstring>
using namespace std;
int p[1005], chushu[1005];
string n;
int m;
int main() {
cin >> n >> m;
for (int i = 0; i < n.size(); i++) chushu[i] = n[i] - '0';
int pos = 0, i = 0;
int x = 0;
while (pos < n.size()) {
x = x * 10 + chushu[pos];
pos++;
p[i] = x / m;
i++;
x = x % m;
}
int j = 0;
while (p[j] == 0) j++;
for (int k = j; k <= i - 1; k++) cout << p[k];
cout << " ";
cout << x << endl;
return 0;
}