北邮图论选择题及参考答案

注1:内容仅供参考,如有错误,欢迎指正
注2:下文的书指的是北京邮电大学出版的《图论及其应用》卓新建 版

概念选择题

1.关于可行流,以下叙述 ( C ) 不正确。
A.各条有向边上的流量均为零的流是一个可行流
B.可行流的流量小于容量限制条件而大于或等于零。
C.可行流的流量大于零而小于容量限制条件
D.在网络的任一中间点,可行流满足流入量 = 流出量。

解析:可行流可以等于零

2.下列错误的是:( C )
A.Hamilton图一定有圈
B.任意图G中,最小度δ≥2,则G含有圈
C.简单图G,边数大于等于点数,则G不一定含有圈
D.简单图G,顶点的最小度δ≥2, 则G含有长度至少为δ+1的圈

解析:

  • Hamilton图⇔包含Hamilton圈的图,A正确
  • 书P40,定理1-12,在任意图G中δ≥2,则图G含有圈,B正确
  • 书P41,定理1-14,在任意图G中ε≥v,则图G含有圈,C错误
  • 书P41,定理1-13,在简单图G中δ≥2,则图G含有长度至少为δ+1的图,D正确

3.G有n个顶点,2n-2条边,且边集可划分成G的两个生成树的边集,下列说法错误的是( D )
A.G的最小割至少含2条边
B.任何两点之间有两条边不交的路
C.G的任意k个点的导出子图的边数不超过2k-2
D.任何两点之间有两条点不交的路

解析:

G的边集可划分成G的两个生成树的边集,树的顶点n,树是连通的,所以至少有n-1条边,也就是说G中的任意顶点u至少有两条关联的边。

  • 由上述分析可知,G的最小割至少含2条边,A正确
  • 在生成树1中任意两点连通,存在路P1,生成树2中这两点之间存在另一条路P2,这两条路的边不交,B正确
  • 书P34,定理1-8,若图G为连通无向图,则任意两条最长路必有公共顶点,D错误

4.下列无向图可能不是偶图的是?( D )
A.无奇圈的非平凡图
B.非平凡的树
C.n方体
D.有偶圈的图

解析:

  • 书P40,定理1-11,图G为二部图⇔图G中不包含奇圈;平凡图:仅有一个顶点的图。无奇圈的非平凡图满足图G中不包含奇圈条件,所以图G是偶图(二部图),A一定
  • 树不一定是偶图,但非平凡树一定是偶图,B一定
  • 书P28,n方体有2n个顶点,n2^(n-1)条边,且是偶图,C一定
  • 反例如下,D不一定
    在这里插入图片描述

5.关于求网络最大流的Ford & Fulkerson标号算法下面哪个说法正确?( D )
A.标号算法是关于点数和弧数的多项式时间算法。
B.标号算法是关于点数的多项式时间算法。
C.广度优先的标号算法是点数的多项式时间算法
D.广度优先的标号算法是点数和弧数的多项式时间算法

解析:
书P170-171,如果网络的容量函数是整数值函数,则标号算法一定可以在有限步内终止;如果是有理数值函数,同样可以求得最大流;但是无理数值函数不能保证。若在标号算法中采用广度优先策略,则标号算法是多项式时间算法,时间复杂度O(vε^2 )

6.对于有向图,下列说法不正确的是?( D )
A.有向图中任意一顶点v只能处于G的某一个强连通分支中;
B.强连通图中的所有顶点必然处于强连通图的某个有向回路中。
C.有向图中顶点v可能处于G的不同的单向分支中;
D.有向连通图中顶点间的单向连通关系是等价关系。

解析:

  • 无向图中顶点间的连通关系是等价关系,有向图需要区分单向连通和双向连通,D错误

7.关于旅行售货员(TSP)问题,下面哪个叙述是正确的?( C )
A.对于特殊的TSP,剪刀差方法和用最小生成树求最优Hamilton圈(“抄近道”)的方法不可能在多项式时间之内找到精确最优解。
B.对于特殊的TSP,也不可能在多项式时间内得到精确最优解;
C.对于特殊的TSP,可能在有限的时间内找到最优解的2倍以内的近似解,也可能在有限的时间内找到最优解;
D.对于特殊的TSP,也不可能设计出多项式时间近似算法,使得近似解在最优解的2倍以内;

解析:特殊的(度量)TSP问题有2-近似算法

8.设G是赋权完全二部图,则下面说法正确的是:( A )
A.都不正确
B.设G的一条权最大的边,则存在一个包含e的最优匹配(即最大权匹配,下同)
C.设G的边的权各不相同,e是G的权最小的边,则G的最优匹配不包含e
D.设G的边的权各不相同,e是G的权最大的边,则G的最优匹配包含e

9.关于最短路,以下叙述正确的是 ( B )
A.从起点出发到终点的最短路是唯一的。
B.从起点出发到终点的最短路不一定是唯一的,但其最短路线的长度是确定的。
C.从起点出发的有向边中的最小权边,一定包含在起点到终点的最短路上。
D.从起点出发的有向边中的最大权边,一定不包含在起点到终点的最短路上。
E.整个网络的最大权边的一定不包含在从起点到终点的最短路线上。

10.关于带收发点的容量网络中从发点到收点的一条增广路,以下叙述正确的是 ( D )
A.增广路上的有向边的方向必须是从发点指向收点的
B.增广路上不能有零流边
C.增广路上的有向边,必须都是不饱和边
D.增广路上与发点到收点方向一致的有向边不能是饱和边,相反方向的有向边不能是零流边

11.下面哪个叙述是正确的?( D )
A.对于v≥3的简单图G,若δ≤v/2,则G为欧拉图;
B.对于v≥3的简单图G,若δ≥v/2,则G为欧拉图;
C.对于v≥3的简单图G,若δ≤v/2,则G为Hamilton图。
D.对于v≥3的简单图G,若δ≥v/2,则G为Hamilton图。

解析:书P148,推论5-2,对于v≥3的简单图G,若δ≥v/2,则G为Hamilton图。

12.网络N=(V, A)中弧集A上的非负整数值函数f满足什么条件就可以称为网络N上的流?( B )
A.f满足不存在可扩路和合成流量条件。
B.f满足容量约束条件和流量守恒条件
C.f满足广度优先条件和深度优先条件。
D.f满足最小割与顶点标号全局最优条件。

13.下面哪个叙述是正确的?( A )
A.一个图G=(V, E)如果有Hamilton圈,则对任意的S⊂V,都有ω(G-S)≤|S|;
B.一个图G=(V, E)如果有欧拉环游,则对任意的S⊂V,都有ω(G-S)≤|S|;
C.一个图如果没有Hamilton圈,则不可能有欧拉环游;
D.一个图如果没有欧拉环游,则不可能有Hamilton圈

解析:

  • 书P145,定理5-3,图G为Hamilton图⇔图G有Hamilton圈,则:对任意的S⊂V,都有ω(G-S)≤|S|,A正确
  • CD,欧拉环游和Hamilton圈没有直接联系

14.下列说法正确的是 ( C )
A.树没有割边
B.G有割边则无圈
C.割边不能在圈上
D.树有唯一的边

15.二部图G=(X, Y, E)有完美匹配,则下述说法错误的是 ( D )
A.|X|=|Y|
B.存在X的子集S,使得|N(S)|≥|S|
C.|X|+|Y|为偶数
D.任意的X中子集S,有|N(S)|>|S|

16.下列哪个序列不是图的度序列
A.(3,3,3,1,0,0)
B.(3,2,1,1,1,0)
C.(1,1,1,2,1,1)
D.(2,2,2,2,2,2)

A.(3,2,2,3,1,1)
B.(1,0,0,3,2,2)
C.(2,2,2,2,1,7)
D.(1,2,2,4,3,3)

17.对于序列(7,5,4,3,3,2),下列说法正确的是 ( BD )
A.是简单图的度序列
B.不是简单图的度序列
C.不是任意图的度序列
D.是图的唯一度序列

解析:6个点有7个度,说明一定存在环或重边,不是简单图,A错误,B正确

18.关于完全偶图说法错误的是 ( C )
A.可能不含偶圈
B.一定不含有奇数条边的闭途径
C.是边数最多的偶图
D.可能不含有奇数个点的圈

19.关于简单图说法正确的是 ( B )
A.简单图可能有2圈
B.简单图一定无环
C.简单图一定无圈
D.简单图可能有1圈

解析:

  • 长度为2的圈是重边,简单图无重边,A错误
  • 长度为1的圈是环,简单图无环,D错误

20.关于无向图是否连通,下列说法错误的是 ( B )
A.连通图的分支数不超过2
B.连通图的任意两点相连
C.任意两点可互达则图连通
D.任意两点可达则图连通

解析:

  • 图连通当且仅当 ω(w)=1,若ω(w)>1则图不连通,所以连通图的分支数不超过2,A正确
  • 连通图的任意两点连通,但是未必相连,B错误

21.关于正则图说法错误的是 ( B )
A.简单正则图的补图一定正则
B.完全偶图是正则图
C. K 9 K_9 K9是8正则的
D. K 8 , 8 K_{8,8} K8,8是8正则的

解析:完全偶图 K m , n K_{m,n} Km,n,当 m ≠ n m \ne n m=n时,图中点的度数为 m m m n n n,不是正则图,B错误

22.点数为3n+2的简单3部图的最大边数为 ( A )
A. 3 n 2 + 4 n + 1 \boldsymbol{3n^2+4n+1} 3n2+4n+1
B. 3 n 2 + 6 n + 3 3n^2+6n+3 3n2+6n+3
C. 3 n 2 + 3 n + 4 3n^2+3n+4 3n2+3n+4
D. 3 n 2 + 5 n + 2 3n^2+5n+2 3n2+5n+2

解析:
考虑点数为3n+2的完全图,一共有(3n+2)(3n+1)/2条边,在3部图中,每一个部内的任意两点之间没有边,这些没有的边数越小,3部图有的边数越多。因为部内的边数是阶数级的,为了让它最小,应该让每一个部的点数尽量均分,所以有n+1, n+1, n分布,因此有
(3n+2)(3n+1)/2-2 n(n+1)/2-n(n-1)/2=3n^2+4n+1

23.关于图G=(V,E),其中V’∈V且E’∈E,下列说法错误的是 ( C )
A.G[E\E’]≠G-E’
B.G[V\V’]=G-V’
C.G[E’]是边集包含E’且点数最少的G的子图
D.若V’=V,则G’=(V’,E’)是生成子图

24.关于空图与平凡图说法正确的是 ( D )
A.空图就是平凡图
B.平凡图没有边
C.空图是只有一个点且无边的图
D.平凡图只有一个点

25.关于树,下列说法错误的是 ( D )
A.每条边是割边
B.非割点一定是叶子
C.任意两点间有唯一的路
D.整数序列(d1,d2,…,dv)是一颗树的度序列当且仅当 ∑ i = 1 v d i = 2 ( v − 1 ) \boldsymbol{∑_{i=1}^vd_i =2(v-1)} i=1vdi=2(v1)
解析:树P81,正整数序列…,需要度大于等于1(不为0)

26.关于途径、迹和路的说法错误的是 ( A )
A.有偶闭迹一定有偶圈
B.有奇闭迹一定有奇圈
C.有偶闭途径可能不含圈
D.圈是点不交的闭途径

解析:

  • 反例如下,有偶闭迹,无偶圈,A错误
    在这里插入图片描述

27.关于完全图 K n K_n Kn说法正确的是 ( B )
A. K n K_n Kn是n个点的图中边数最多的
B. K n \boldsymbol{K_n} Kn是简单图
C.若n为偶数则 K n K_n Kn是偶图
D. K n K_n Kn是n-正则的

解析: K n K_n Kn是n个点的简单图中边数最多的

28.完全图 K n K_n Kn的边数为 ( D )
A.1/2 n 2 n^2 n2
B. n 2 n^2 n2
C.1/2 n 2 − n n^2-n n2n
D. ( n 2 ) \boldsymbol{\binom{n}{2} } (2n)

29.关于点v的度d(v)说法正确的是 ( D )
A.邻接矩阵里点v对应的行和
B.邻域N(v)的大小
C.点v的邻点的数目
D点v关联的边的数目

30.根据图论第一定理,说法正确的是 ( C )
A.有向图入度和为两倍弧数
B.无向图偶度点数为奇数
C.无向图奇度点数为偶数
D.有向图出度和为两倍边数

31.图G的键为B,下列说法错误的是 ( D )
A.割边是键
B.B为去掉使图分支数增加的极小边子集
C.w(G-B)=w(G)+1
D.B为极小割边集

解析:割边集和边割集不一样

32.对于图G1=(V1,E1)与G2=(V2,E2),以下关于同构的说法正确的是 ( C )
A.若G1与G2同构,则V1=V2且E1=E2
B.若V1与V2存在双射且E1与E2间存在双射,则G1与G2同构
C.若G1与G2同构,则两图度序列相同
D.若G1与G2度序列相等,则两图同构

33.简单图G点数为v≥2边数为ε最小度为δ,下面说法错误的是( B )
A.若ε≤v-2,则图不连通
B.若δ≥2,则图含δ长圈
C.图含δ长路
D.若ε≥v,则图含圈

解析:图G含有长度至少为δ+1的圈

34.关于恰有两个奇度点的图,下列说法正确的是 ( A )
A.两奇度点一定连通
B.若图为非简单图,则两奇度点不一定连通
C.两奇度点一定都在圈(可能不同)里
D.若图不连通,则两奇度点可能不连通

35.n阶图G的生成树为T,下列说法正确的是 ( C )
A.余树 T ‾ \overline{T} T连通
B.余树 T ‾ \overline{T} T无圈
C.余树 T ‾ = K n − T \boldsymbol{\overline{T}=K_n-T} T=KnT
D.余树 T ‾ \overline{T} T不含边割

36.设图G存在完美匹配,下列说法错误的是 ( B )
A.G的每个分支也有完美匹配
B.G的割边一定在完美匹配中
C G的顶点数是偶数
D.G的最小度至少是1

解析:考虑4个点的路1-2-3-4,(2, 3)是割边,但它不在完美匹配中

37.G是一个有n个顶点k个分支的森林。则G的边数是 ( B )
A. n-k-1
B. n-k
C. [n/k]
D. [n/k]-1

38.设G是一棵树,下述说法错误的是 ( B )
A. G是二部图
B. G有割点
C. G有割边
D. G不含圈

39.设G是一棵树,它有一个顶点的度为5,一个顶点的度为4,2个顶点的度为3,其余都是叶子,则它有 ( C ) 个叶子
A. 11
B. 5
C. 9
D. 7

40.图G中恰好有两个度数是奇数的点(其他点都是偶度点),下面哪个结论正确? ( C )
A.以上说法都是错误的
B.此两个度数是奇数的点一定都在圈中(可以在不同的圈中)
C.图G如果没有重边和环,此两个度数是奇数的点一定连通
D.图G如果是不连通的,此两个度数是奇数的点不一定连通

解析:设叶子个数为m,则有5+4+2*3+m=2(m+4-1),解得m=9

41.有6个顶点的完全三部图,在同构意义下一共有几种不同的完全三部图? ( B )
A. 4
B. 3
C. 1
D. 2

解析:112,123,222

看图选择题

1.下述图中有( C )个不同的包含边(B, D)的生成树。
在这里插入图片描述

A. 3
B. 9
C. 6
D. 1

2.下述图有( C )个包含边(1, 2)的完美匹配。
在这里插入图片描述

A. 2
B. 4
C. 3
D. 5

解析:
{(1, 2), (6, 7), (5, 10), (3, 8), (4, 9)}
{(1, 2), (6, 7), (5, 10), (8, 9), (3, 4)}
{(1, 2), (6, 7), (9, 10), (4, 5), (3, 8)}

3.对于下图,下面哪个选项是正确的 ( C )
在这里插入图片描述

A. 没有Hamilton圈但是有Hamilton路;
B. 既没有Hamilton圈也没有欧拉环游;
C. 有Hamilton圈;
D. 既没有Hamilton圈也没有Hamilton路。

4.下述赋权图中有( D )个不同的权和的最大生成树。
在这里插入图片描述
A. 3
B. 2
C. 4
D. 1

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值