一个比较简单,但对我来说比较纠结的一个dp问题。原题地址:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=503
就是分摊硬币,面值从1~500,最多一个背包有100个硬币,然后找出最小的分法,网站上的方法和我的有些不太一样,不过还是ac了。
本来认为写得没错,结果老是runtime error,而后发现m是非负的,我忘了考虑m是0的情况,以后做题努力养成严谨的习惯
#include <iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define M 100
#define N 50000
using namespace std;
int m;
int num[M];
int d[M][N];
int v[M][N];
//两个背包,两者之差最小,其实我们只要对某一个硬币选或者不选,这样只会导致两种结果
//i表示从物品i开始选择,j表示两者之间已有的差值绝对值
int dp(int i,int j)
{
if(v[i][j]) return d[i][j];
v[i][j]=1;
if(i==m-1) return d[i][j]=min(abs(j-num[i]),abs(j+num[i]));
return d[i][j]=min(abs(dp(i+1,abs(j-num[i]))),abs(dp(i+1,abs(j+num[i]))));
}
int main()
{
int k,n;
scanf("%d",&n);
while(n--)
{
memset(d,0,sizeof(d));
memset(v,0,sizeof(v));
scanf("%d",&m);
if(m>0)
{
for(k=0;k<m;k++)
scanf("%d",&num[k]);
printf("%d\n",dp(0,0));//从物品零开始选择,最开始差值为0
}
else printf("0\n");
}
return 0;
}