f(x,y) = xy的全微分

文章讲述了函数f(x,y)=xy在点(x,y)处沿着(dx,dy)方向的变化率df的计算公式df=ydx+xdy,并解释了df的几何意义,即函数在该点处沿着特定方向的梯度向量与该方向的点积,表示函数的变化率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果 f ( x , y ) = x ∗ y f(x,y) = x*y f(x,y)=xy,则 d f df df 表示函数 f ( x , y ) f(x,y) f(x,y) ( x , y ) (x,y) (x,y) 处沿着某个方向 d r ⃗ = ( d x , d y ) d\vec{r}=(dx,dy) dr =(dx,dy) 增加的变化率。根据全微分的定义, d f df df 可以表示为:

d f = ∂ f ∂ x d x + ∂ f ∂ y d y df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy df=xfdx+yfdy

f ( x , y ) = x ∗ y f(x,y) = x*y f(x,y)=xy 代入上式可得:

d f = y d x + x d y df = ydx + xdy df=ydx+xdy

这个式子可以理解为,当在 ( x , y ) (x,y) (x,y) 点沿着 ( d x , d y ) (dx,dy) (dx,dy) 方向移动一点时, f ( x , y ) f(x,y) f(x,y) 的增量为 d f df df

在几何上, d f df df 可以表示为函数 f ( x , y ) f(x,y) f(x,y) 的梯度向量 ∇ f \nabla f f ( x , y ) (x,y) (x,y) 点处与 d r ⃗ = ( d x , d y ) d\vec{r}=(dx,dy) dr =(dx,dy) 的点积,即:

d f = ∇ f ⋅ d r ⃗ df = \nabla f \cdot d\vec{r} df=fdr

因此, d f df df 的几何意义是函数 f ( x , y ) f(x,y) f(x,y) ( x , y ) (x,y) (x,y) 点处沿着 d r ⃗ d\vec{r} dr 方向的变化率。

|

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值