ConcurrentHashMap源码解析
原文地址:http://jachindo.top:8090/archives/concurrenthashmap%E6%BA%90%E7%A0%81%E8%A7%A3%E6%9E%90
jdk1.7:
- 元素封装为HashEntry,同jdk1.7的HashMap
- 分段锁+链表
jdk1.8
主要有两方面的优化:
底层由链表 --> 链表 + 红黑树
自旋(while) + CAS + synchronized 实现锁链表头/根节点(不是segment锁了)
元素封装为Node<K,V>,同jdk1.8的HashMap
static class Node<K,V> implements Map.Entry<K,V> { final int hash; final K key; volatile V val; volatile Node<K,V> next;
注意:
https://mp.weixin.qq.com/s/muiJ2vKK6a68_yCW6XWsVg
- 哈希表是volatile Node<K,V>[]类型,这里的volatile保证的是扩容时对整张哈希表的可见性。
- Node<K,V>中的val和next是volatile的,用来保证数组元素的可见性。
保证线程安全的手段:
- 储存 Map 数据的数组被 volatile 关键字修饰,一旦被修改,立马就能通知其他线程,因为是数组,所以需要改变其内存值,才能真正的发挥出 volatile 的可见特性;
- put 时,如果计算出来的数组下标索引没有值的话,采用无限 for 循环 + CAS 算法,来保证一定可以新增成功,又不会覆盖其他线程 put 进去的值;
- 如果 put 的节点正好在扩容,会等待扩容完成之后,再进行 put ,保证了在扩容时,老数组的值不会发生变化;
- 对数组的槽点进行操作时,会先锁住槽点,保证只有当前线程才能对槽点上的链表或红黑树进行操作;
- 红黑树旋转时,会锁住根节点,保证旋转时的线程安全。
以下源码以jdk1.8为例
§ put时的线程安全
public V put(K key, V value) {
return putVal(key, value, false);
}
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode()); // 计算key的hash值
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0) // 是否需要初始化哈希表
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {// 查看对应hash位置是否有数据
// 若当前桶为空,则直接使用CAS自旋写入,直至成功。
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
// 如果定位出的位置为-1(MOVED == -1),则等待扩容扩容完成
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
// 利用synchronized锁写入数据,类似于hashmap,只是hashmap没有加锁
else {
V oldVal = null;
synchronized (f) { // 锁住当前桶
if (tabAt(tab, i) == f) {
if (fh >= 0) {
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}
§ 初始化时的线程安全:
private final Node<K,V>[] initTable() { Node<K,V>[] tab; int sc; // 通过自旋保证初始化成功 while ((tab = table) == null || tab.length == 0) { if ((sc = sizeCtl) < 0) // 有线程正在初始化,释放当前 CPU 的调度权,重新发起锁的竞争 Thread.yield(); else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { // 设置为-1说明本线程正在初始化。 try { // 很有可能执行到这里的时候,table 已经不为空了,这里是双重 check if ((tab = table) == null || tab.length == 0) { int n = (sc > 0) ? sc : DEFAULT_CAPACITY; @SuppressWarnings("unchecked") Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; table = tab = nt; sc = n - (n >>> 2); } } finally { sizeCtl = sc; } break; } } return tab; }
注意这里4、11双重check
§ get方法
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
if ((eh = e.hash) == h) {
// 如果对应位置的桶上元素直接是目标值,则返回
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
else if (eh < 0) // 在树形结构上
return (p = e.find(h, key)) != null ? p.val : null;
// 在链表上
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
§ 扩容时的线程安全(transfer)
重点就是新老数组间数据的拷贝
核心,拷贝时锁住(保证其他put无法put),拷贝完一个槽点后设为转移节点(令put自旋等待整个拷贝的完成)
- 首先需要把老数组的值全部拷贝到扩容之后的新数组上,先从数组的队尾开始拷贝;
- 拷贝数组的槽点时,先把原数组槽点锁住,保证原数组槽点不能操作,成功拷贝到新数组时,把原数组槽点赋值为转移节点;
- 这时如果有新数据正好需要 put 到此槽点时,发现槽点为转移节点,就会一直自旋,所以在扩容完成之前,该槽点对应的数据是不会发生变化的;
- 从数组的尾部拷贝到头部,每拷贝成功一次,就把原数组中的节点设置成转移节点;
- 直到所有数组数据都拷贝到新数组时,直接把新数组整个赋值给数组容器,拷贝完成。
源码如下:
// 扩容主要分 2 步,第一新建新的空数组,第二移动拷贝每个元素到新数组中去
// tab:原数组,nextTab:新数组
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
// 老数组的长度
int n = tab.length, stride;
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
// 如果新数组为空,初始化,大小为原数组的两倍,n << 1
if (nextTab == null) { // initiating
try {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
transferIndex = n;
}
// 新数组的长度
int nextn = nextTab.length;
// 代表转移节点,如果原数组上是转移节点,说明该节点正在被扩容
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
// 无限自旋,i 的值会从原数组的最大值开始,慢慢递减到 0
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
while (advance) {
int nextIndex, nextBound;
// 结束循环的标志
if (--i >= bound || finishing)
advance = false;
// 已经拷贝完成
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
// 每次减少 i 的值
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
// if 任意条件满足说明拷贝结束了
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
// 拷贝结束,直接赋值,因为每次拷贝完一个节点,都在原数组上放转移节点,所以拷贝完成的节点的数据一定不会再发生变化。
// 原数组发现是转移节点,是不会操作的,会一直等待转移节点消失之后在进行操作。
// 也就是说数组节点一旦被标记为转移节点,是不会再发生任何变动的,所以不会有任何线程安全的问题
// 所以此处直接赋值,没有任何问题。
if (finishing) {
nextTable = null;
table = nextTab;
sizeCtl = (n << 1) - (n >>> 1);
return;
}
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;
i = n; // recheck before commit
}
}
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
else {
synchronized (f) {
// 进行节点的拷贝
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
if (fh >= 0) {
int runBit = fh & n;
Node<K,V> lastRun = f;
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
// 如果节点只有单个数据,直接拷贝,如果是链表,循环多次组成链表拷贝
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
// 在新数组位置上放置拷贝的值
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
// 在老数组位置上放上 ForwardingNode 节点
// put 时,发现是 ForwardingNode 节点,就不会再动这个节点的数据了
setTabAt(tab, i, fwd);
advance = true;
}
// 红黑树的拷贝
else if (f instanceof TreeBin) {
// 红黑树的拷贝工作,同 HashMap 的内容,代码忽略
…………
// 在老数组位置上放上 ForwardingNode 节点
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
§ 关于操作volatile数组(哈希表):
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) { return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE); }
tab是一个volatile的
Node<K,V>[]
类型数组,ConcurrentHashMap中获取和设置该数组元素都是通过类似方法(getObjectVolatile
)实现的,而不是直接访问数组元素。可能是因为volatile数组对数组内元素的可见性保证有待商榷,所以需要特殊的操作方法来保证其内部元素的可见性。
注意:
key和value都不能为null
参考:
https://crossoverjie.top/2018/07/23/java-senior/ConcurrentHashMap/
https://mp.weixin.qq.com/s/r1ErR7EroJt4b83Pm7Xk6g