Leetcode:Container With Most Water 最大水容器

此博客讨论了LeetCode中的'Container With Most Water'问题,即如何找到能容纳最多水的两个垂直线。文章通过木桶效应解释了问题的本质,并提供了超时的暴力解法作为起点。接着,作者引入双指针策略,通过移动较短木板的指针来优化时间复杂度至O(n),以此解决超时问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given n non-negative integers a1a2, ..., an, where each represents a point at coordinate (iai). n vertical lines are drawn such that the two endpoints of line i is at (iai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.

Note: You may not slant the container and n is at least 2.

题意还是好理解的,说白了就是木桶效应,只是变成了多个桶


盛水量多少,取决于那块最短的板

为了更好理解,引用leetcode某位大佬的图:


我们必须去用以两个垂直线中较短那条线为高,以两垂直线距离为长来算出最大面积

首先从暴力求解入手,

代码如下:

class Solution {
public:
    int maxArea(vector<int>& height) {
        int maxArea = 0;
        int area    = 0;
        for (int left = 0; left < height.size(); ++left)
        {
            for (int right = left + 1; right < height.size(); ++right)
            {
                area = min(height[left], height[right]) * (right - left);
                if (area > maxArea)
                    maxArea = area;
            }
        }
        return maxArea;
    }
};

毕竟是medium难度,怎么可能这么简单,结果当然是超时

Time Limit Exceeded

那么应该怎么办?怎么把时间复杂度降为O(n)?

既然这个木板短了,我们换个长的不就行了吗。我们可以用两个指针,一个指针left指向开始,另一个right指向结尾,如果left木板比right木板矮,那就让left指针右移;如果left木板比right木板高,那么right指针左移。为什么不是left木板比right木板高就右移left呢?因为木桶效应,盛水量多少,取决于那块最短的板。我们如果移动高的那块板没有任何用处,装水量还是跟原来那块短板相关!

代码如下:

class Solution {
public:
    int maxArea(vector<int>& height) {
        int left = 0;
        int right = height.size() - 1;
        int maxArea = 0;
        while (left < right)
        {
            maxArea = max(maxArea, min(height[left], height[right]) * (right - left));
            if (height[left] < height[right])
                ++left;
            else
                --right;
        }
        return maxArea;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值