kafka
文章平均质量分 89
kafka知识专栏
梦想画家
开源软件爱好者,乐于博客分享,业余时间喜欢跑步和科幻,希望与意趣相投朋友一起学习交流。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Faust 实战:Python 流处理利器与实时数据管道构建指南
在实时数据处理需求激增的今天(如用户行为分析、物联网设备监控、金融交易流处理),开发者亟需一个**高性能、易扩展且与 Python 生态无缝集成**的流处理工具。Google 团队开源的 **Faust** 应运而生——它基于 Apache Kafka 和 Python 的 `asyncio`,将复杂的流处理逻辑简化为“装饰器+异步函数”的直观写法,支持**实时数据分析、事件驱动架构、微服务通信**等场景,并通过**有状态计算、Exactly-Once 语义**保障数据可靠性。本文将深入解析 Faust 的原创 2025-10-04 10:07:34 · 1054 阅读 · 0 评论 -
Kafka Streams 并行处理机制深度解析:任务(Task)与流线程(Stream Threads)的协同设计
在构建实时流处理应用时,如何充分利用计算资源同时保证处理效率是一个关键问题。Kafka Streams 通过其独特的任务(Task)和流线程(Stream Threads)并行模型,为开发者提供了既简单又强大的并行处理能力。本文将深入解析 Kafka Streams 中任务与线程的协同工作机制,帮助您优化流处理应用的性能表现。原创 2025-08-01 11:30:42 · 833 阅读 · 0 评论 -
Kafka Streams窗口技术全解析:从理论到电商实时分析实战
在实时数据处理领域,窗口计算是解决时间维度聚合问题的关键技术。本文深入解析Kafka Streams提供的三种核心窗口类型(翻转窗口、跳跃窗口、会话窗口),通过电商大促场景下的真实案例,展示如何利用窗口技术实现实时GMV统计、用户行为分析和热门商品排行等业务需求。文章还包含窗口选择策略、性能优化技巧和进阶实现方案,帮助开发者掌握流式计算的核心能力。原创 2025-07-31 11:48:45 · 991 阅读 · 0 评论 -
Java HashMap中的compute及相关方法详解:从基础到Kafka Stream应用
HashMap是Java集合框架中最常用的数据结构之一,它提供了高效的键值对存储和检索功能。在Java 8中,HashMap引入了一系列新的原子性更新方法,包括`compute()`、`computeIfAbsent()`和`computeIfPresent()`等,这些方法极大地简化了在Map中进行复杂更新操作的代码。本文将详细介绍这些方法,包括它们的用法、示例和实际应用场景,并特别探讨它们在Kafka Stream数据处理中的实际应用。原创 2025-07-28 14:55:54 · 687 阅读 · 0 评论 -
Apache Kafka实时数据流处理实战指南
在当今数据驱动的时代,实时数据处理能力已成为企业竞争力的关键因素。Apache Kafka作为实时数据流处理的领导者,凭借其高吞吐量、低延迟和强大的扩展性,成为众多企业的首选解决方案。本文将深入解析Kafka的核心概念,并提供详细的实战指南,帮助您快速构建自己的实时数据流处理系统。原创 2025-07-28 10:59:16 · 1136 阅读 · 0 评论 -
从ZooKeeper到KRaft:Kafka架构演进与无ZooKeeper部署指南
Apache Kafka作为分布式流处理平台的领导者,长期以来依赖ZooKeeper进行集群协调和元数据管理。然而,这种架构带来了额外的复杂性和运维负担。随着KIP-500的提出和实现,Kafka正在逐步摆脱对ZooKeeper的依赖,转向使用内置Raft协议实现的KRaft模式。本文将深入探讨Kafka无ZooKeeper架构(KRaft)的原理、配置方法和运维实践。原创 2025-07-22 21:39:31 · 1583 阅读 · 0 评论 -
深入解析:如何在Kafka中配置Source和Sink连接器构建高效数据管道
Apache Kafka作为实时事件流处理的行业标准平台,其真正价值在于能够与各种数据系统无缝集成,实现数据的导入导出。这一过程的关键在于Kafka Connectors——一组模块化插件,让我们无需编写额外代码就能将Kafka与数据基础设施连接起来。本文将深入探讨如何在Kafka中设置Source和Sink连接器,从基础配置到高级优化,构建一个健壮的数据管道。原创 2025-07-21 20:50:04 · 1178 阅读 · 0 评论 -
Change Data Capture (CDC) with Kafka Connect:实时数据同步的完整指南
Change Data Capture (CDC) 是一种高效的数据同步技术,能够捕获数据库的变更(插入、更新、删除)并实时传输到其他系统。结合 **Kafka Connect**,我们可以构建一个可靠、可扩展的 CDC 管道,实现数据库与数据湖、数据仓库或消息队列的无缝集成。原创 2025-07-19 10:54:48 · 1710 阅读 · 0 评论 -
InfluxDB 3与Apache Parquet:打造高性能时序数据存储与分析解决方案
在当今数据驱动的时代,各行业产生的数据量呈爆炸式增长,如何高效存储和管理海量数据成为企业和开发者面临的重大挑战。对于时序数据而言,其具有数据量大、写入频繁、查询模式多样等特点,对存储系统的性能和效率提出了更高的要求。InfluxDB 3作为一款先进的时序数据库,引入Apache Parquet这一强大的列式存储格式,为解决时序数据存储与分析的难题提供了创新的解决方案。本文将深入剖析InfluxDB 3如何借助Apache Parquet实现高效的数据存储与查询优化,详细介绍相关技术原理、应用场景及性能优势,原创 2025-07-17 17:44:59 · 1501 阅读 · 0 评论 -
InfluxDB 3.2 数据架构优化指南:高效存储与查询实践
InfluxDB 3.2 在性能、资源管理和查询优化方面进行了显著改进。本文结合 InfluxDB 3 的语法规范,深入探讨如何优化数据布局与架构设计,涵盖 **系列基数(Series Cardinality)管理、数据分桶策略、降采样(Downsampling)优化** 等关键实践,并提供 **代码示例** 和 **性能对比分析**,帮助用户构建高性能、低成本的时序数据库解决方案。原创 2025-07-17 08:29:47 · 1312 阅读 · 0 评论 -
OPC-UA与MQTT协议详解及Python实现指南
物联网(IoT)正在通过实现从简单传感器到复杂工业机器的各种设备之间的无缝通信来改变行业。推动物联网系统的两个最突出的协议是OPC-UA(开放平台通信-统一架构)和MQTT(消息队列遥测传输)。本文将深入探讨这两种协议的工作原理、优势以及如何使用Python实现它们来创建强大的物联网解决方案。原创 2025-07-16 16:20:24 · 1792 阅读 · 0 评论 -
使用Telegraf从工业物联网设备收集数据的完整指南
在当今的工业物联网(IIoT)环境中,从各种设备收集、处理和转发数据是一项关键任务。本文将详细介绍如何使用Telegraf这一强大的数据收集工具,从多种通信协议的IoT设备中收集数据,并将其发送到InfluxDB等数据存储系统。原创 2025-07-16 15:24:41 · 2502 阅读 · 0 评论 -
企业级实时流处理:Kafka Streams完整解决方案
在当今数据驱动的世界中,实时数据处理能力已成为企业竞争力的关键因素。Kafka Streams作为Apache Kafka生态系统中的流处理库,提供了一种高效、可靠的实时数据处理解决方案。本文深入探讨了Kafka Streams的核心概念、架构设计、关键特性以及实际应用场景,通过详细的代码示例展示了如何构建一个完整的流处理应用。无论您是数据工程师、架构师还是技术决策者,本文都将为您提供关于Kafka Streams的全面理解,帮助您评估其在企业级应用中的价值。原创 2025-07-15 20:48:30 · 973 阅读 · 0 评论 -
深入解析Avro、Protobuf与JSON:序列化技术的选择与应用
在现代分布式系统和数据交换场景中,序列化技术是数据存储、传输和通信的核心。本文深入探讨三种主流序列化技术:**Avro**、**Protobuf** 和 **JSON**,从背景、特点、示例代码(Python)、优势及最佳实践等多个维度进行对比分析,帮助开发者根据业务需求选择合适的序列化方案。原创 2025-07-15 12:04:33 · 1180 阅读 · 0 评论 -
深入理解Schema Registry的兼容性模式
在现代数据架构中,Schema Registry已成为管理数据契约的核心组件,特别是在基于事件驱动的架构和流处理系统中。Schema Registry不仅存储和管理数据Schema,还提供了强大的兼容性控制机制,确保数据生产者和消费者之间的平滑演进。本文将深入探讨Schema Registry提供的七种兼容性模式,帮助您在实际应用中做出明智的选择。原创 2025-07-14 17:41:06 · 1026 阅读 · 0 评论 -
Kafka Schema Registry 策略详解:TopicNameStrategy、RecordNameStrategy 与 TopicRecordNameStrategy
在现代数据架构中,Apache Kafka 已成为企业级数据流处理的事实标准。随着数据管道的复杂性增加,确保数据的一致性和兼容性变得至关重要。Kafka Schema Registry 正是为解决这一问题而诞生的工具,它通过管理数据 schema 来保证生产者和消费者之间的数据契约。本文将深入探讨 Schema Registry 的三种核心策略:TopicNameStrategy、RecordNameStrategy 和 TopicRecordNameStrategy,并通过实际案例场景说明它们的应用。原创 2025-07-14 13:54:44 · 977 阅读 · 0 评论 -
Kafka Schema Registry:数据契约管理的利器
在现代数据架构中,Apache Kafka 已成为流式数据处理的核心组件。然而,随着数据管道的复杂性增加,如何确保生产者和消费者之间的数据格式兼容性成为一个关键挑战。Kafka Schema Registry 应运而生,它提供了一种集中化的 schema 管理机制,确保数据在传输过程中的一致性和可演化性。本文将介绍 Schema Registry 的背景、设计目标、应用场景,并通过示例说明其使用方式,最后探讨它的优势与价值。原创 2025-07-12 22:13:57 · 1131 阅读 · 0 评论 -
ksqlDB:实时流数据处理的革命性工具
ksqlDB 是一个开源的流式 SQL 引擎,专为实时数据处理而设计。它基于 Apache Kafka 构建,允许开发者使用熟悉的 SQL 语法处理流数据,无需编写复杂的代码。本文将介绍 ksqlDB 的产生背景、应用场景、示例说明、核心优势,并与其他流处理技术(如 Apache Flink、Apache Spark Streaming)进行对比分析,帮助读者理解其价值。原创 2025-07-12 03:00:00 · 1008 阅读 · 0 评论 -
深入探索Kafka Streams:企业级实时数据处理实践指南
在当今数据驱动的商业环境中,实时数据处理能力已成为企业竞争力的关键因素。本文深入探讨了Apache Kafka Streams在企业级应用中的实践,不仅涵盖了基础概念和技术实现,还结合金融、电商和物联网三个典型行业场景,提供了具体的应用案例和代码实现。通过这些实例,读者可以了解如何将Kafka Streams集成到现有系统中,解决实际业务问题,如实时交易监控、库存管理和设备状态分析。文章最后还讨论了性能优化策略和常见陷阱,为企业构建高效可靠的流处理系统提供全面指导。原创 2025-07-11 15:49:40 · 1038 阅读 · 0 评论 -
RabbitMQ从入门到实践:消息队列核心原理与典型应用场景
在现代应用开发中,系统各部分之间的通信至关重要。这就是像RabbitMQ这样的消息代理发挥作用的地方。无论您是在构建微服务架构、实现任务队列,还是开发实时聊天应用程序,RabbitMQ都可能成为改变游戏规则的工具。本文将深入探讨RabbitMQ是什么、它的工作原理以及您为何要考虑使用它。原创 2025-06-23 00:00:00 · 992 阅读 · 0 评论 -
如何检查Apache Kafka服务运行状态
本文介绍了几种命令行方法:zookeeper命令、kafka的AdminClient、kcat工具以及UI方法查看kafka服务的运行状态。原创 2022-10-21 13:42:41 · 10570 阅读 · 0 评论 -
详解Apache Kafka的数据模型
在介绍事件驱动系统的数据建模之前,我们需要了解一些概念,例如事件、事件流、生产者-消费者和主题。本文我们使用Docker环境来介绍Apache Kafka消息处理系统的数据建模。首先介绍事件、主题和分区的基础概念,然后通过生产、消费事件理解事件流的体系结构。原创 2022-10-18 09:30:00 · 528 阅读 · 0 评论 -
使用Docker搭建Apache Kafka环境
本文使用Docker技术创建单个Kafka节点和Kafka集群环境,并且使用可视化工具连接服务查看代理服务器的配置信息。原创 2022-10-17 19:54:14 · 2488 阅读 · 4 评论 -
自定义kafka消息序列化
但也提供了自定义序列化能力。为了序列化对象,需要实现org.apache.kafka.common.serialization包下的Serializer接口,类似的反序列化实现接口为Deserializer。两个接口有三个方法需要重写:configure: 用于实现配置方面的细节serialize/deserialize: 包括实际序列化和反序列化实现逻辑close: 用于关闭Kafka session本文展示了Kafka生产者如何使用序列化类通过网络发送和消费消息。原创 2022-10-08 10:15:00 · 2273 阅读 · 0 评论 -
如何删除kafka主题数据
kafka消息在过了保留周期之后会被自动清除。但总有一些情况,需要立刻删除消息。假设这样场景:已经开始给kafka主题生产消息的应用发现了缺陷,接着bug修复程序需要更新,这是kafka主题中已经了一些错误的消息。这样场景通常在开发环境,我们需要的就是快速批量删除这些消息。本文介绍了几种方式删除kafka主题数据。包括设置主题过期时间、删除主题所有数据及部分分区数据,到通过删除主题变相删除数据。原创 2022-09-30 09:34:18 · 5633 阅读 · 1 评论 -
配置Kafka消息保留时间
本文探索了Apache Kafka消息基于时间的保留策略。通过创建简单的shell脚本来简化管理过程,接着我们创建了独立的消费者和生产者,以验证在保留期之后消息的过期场景。原创 2022-09-29 16:43:29 · 10048 阅读 · 0 评论 -
Spring Cloud Stream 和 Kafka实战教程
我们的项目需要于kafka进行通讯,因此需要定义输出流(往kafka主题写消息)、输入流(从kafka主题中读消息)。Spring Cloud 提供了便捷方式实现上述功能,仅需要简单创建接口,给每个流向指定相应方法。/*** input*//*** output*/}inboundGreetings() 方法定义输入流从 Kafka 读取消息,outboundGreetings() 方法定义输出流往kafka写消息。原创 2022-09-26 18:13:41 · 2617 阅读 · 0 评论 -
配置Kafka发送大消息
在本文中,我们介绍了配置调优Kafka选项以发送大于1MB的大消息。包括生产者端、主题、代理服务和消费者端的配置选项。其中一些选项是强制配置,一些是可选配置,虽然消费者配置是可选的,但可以避免负面的性能影响。最后,我们还介绍了发送大消息的其他可能选项。内容参考:[Send Large Messages With Kafka](Send Large Messages With Kafka)原创 2022-09-26 14:23:59 · 5469 阅读 · 0 评论 -
Spring集成Apache Kafka教程
前面介绍了发送、接收字符串消息,我们可以发送接收自定义java对象。这选哟配置相应序列化和反序列类。}@Bean// ...}@Bean}@Bean// ...props,}@Bean}}为了反序列化接收的消息,需要给消费者提供自定义MessageConverter.在后台,MessageConverter依赖于Jackson2JavaTypeMapper。我们还需要提供反向映射信息。原创 2022-09-23 15:50:44 · 2921 阅读 · 0 评论 -
Java 创建kafka主题
本文简要介绍Apache Kafka,并使用Java编码方式创建、配置kafka主题。Kafak 介绍Apache Kafka是强大、高性能、分布式的事件流平台。通常生产者应用程序发布事件到Kafka,消费者订阅这些事件以便读取和处理它们。Kafka使用主题来存储和分类这些事件,例如,在一个电子商务应用程序中,可能有一个“订单”主题。Kafka主题是分区的,它将数据分布在多个代理上以实现可伸缩性。分区可设置副本,从而使数据具有容错性和高可用性。主题还可设置保留策略,便于后期使用。这些都可以通过Ka.原创 2022-03-30 17:05:14 · 3607 阅读 · 0 评论
分享