案列:SQL查询优化原理分析(900W+数据,从17s到300ms)

一张财务流水表,未分库分表,目前的数据量为9555695,分页查询使用到了limit,优化之前的查询耗时16 s 938 ms (execution: 16 s 831 ms, fetching: 107 ms),按照下文的方式调整SQL后,耗时347 ms (execution: 163 ms, fetching: 184 ms);

操作: 查询条件放到子查询中,子查询只查主键ID,然后使用子查询中确定的主键关联查询其他的属性字段;

原理: 减少回表操作;

–优化前SQLSELECT各种字段FROMtable_nameWHERE各种条件LIMIT0,10;
–优化后SQLSELECT各种字段FROMtable_namemain_taleRIGHTJOIN(SELECT子查询只查主键FROMtable_nameWHERE各种条件LIMIT0,10;)temp_tableONtemp_table.主键=main_table.主键

一:前言

首先说明一下MySQL的版本:想要其他资料的请添加资料分享群934623944就可免费获取

mysql>selectversion();±----------+|version()|±----------+|5.7.17|±----------+1rowinset(0.00sec)
表结构:

mysql>desctest;±-------±--------------------±-----±----±--------±---------------+|Field|Type|Null|Key|Default|Extra|±-------±--------------------±-----±----±--------±---------------+|id|bigint(20)unsigned|NO|PRI|NULL|auto_increment||val|int(10)unsigned|NO|MUL|0|||source|int(10)unsigned|NO||0||±-------±--------------------±-----±----±--------±---------------+3rowsinset(0.00sec)
id为自增主键,val为非唯一索引。

灌入大量数据,共500万:

mysql>selectcount()fromtest;±---------+|count()|±---------+|5242882|±---------+1rowinset(4.25sec)
我们知道,当limit offset rows中的offset很大时,会出现效率问题:

mysql>select*fromtestwhereval=4limit300000,5;±--------±----±-------+|id|val|source|±--------±----±-------+|3327622|4|4||3327632|4|4||3327642|4|4||3327652|4|4||3327662|4|4|±--------±----±-------+5rowsinset(15.98sec)
为了达到相同的目的,我们一般会改写成如下语句:

mysql>select*fromtestainnerjoin(selectidfromtestwhereval=4limit300000,5)bona.id=b.id;±--------±----±-------±--------+|id|val|source|id|±--------±----±-------±--------+|3327622|4|4|3327622||3327632|4|4|3327632||3327642|4|4|3327642||3327652|4|4|3327652||3327662|4|4|3327662|±--------±----±-------±--------+5rowsinset(0.38sec)
时间相差很明显。想要其他资料的请添加资料分享群934623944就可免费获取

为什么会出现上面的结果?我们看一下select * from test where val=4 limit 300000,5;的查询过程:

查询到索引叶子节点数据。
根据叶子节点上的主键值去聚簇索引上查询需要的全部字段值。
类似于下面这张图:

案列:SQL查询优化原理分析(900W+数据,从17s到300ms)
像上面这样,需要查询300005次索引节点,查询300005次聚簇索引的数据,最后再将结果过滤掉前300000条,取出最后5条。MySQL耗费了大量随机I/O在查询聚簇索引的数据上,而有300000次随机I/O查询到的数据是不会出现在结果集当中的。

肯定会有人问:既然一开始是利用索引的,为什么不先沿着索引叶子节点查询到最后需要的5个节点,然后再去聚簇索引中查询实际数据。这样只需要5次随机I/O,类似于下面图片的过程

案列:SQL查询优化原理分析(900W+数据,从17s到300ms)
其实我也想问这个问题。

二:证实

下面我们实际操作一下来证实上述的推论:

为了证实select * from test where val=4 limit 300000,5是扫描300005个索引节点和300005个聚簇索引上的数据节点,我们需要知道MySQL有没有办法统计在一个sql中通过索引节点查询数据节点的次数。我先试了Handler_read_*系列,很遗憾没有一个变量能满足条件。

我只能通过间接的方式来证实:

InnoDB中有buffer pool。里面存有最近访问过的数据页,包括数据页和索引页。所以我们需要运行两个sql,来比较buffer pool中的数据页的数量。预测结果是运行select * from test a inner join (select id from test where val=4 limit 300000,5); 之后,buffer pool中的数据页的数量远远少于select * from test where val=4 limit 300000,5;对应的数量,因为前一个sql只访问5次数据页,而后一个sql访问300005次数据页。

select * from test where val=4 limit 300000,5

mysql>selectindex_name,count(*)frominformation_schema.INNODB_BUFFER_PAGEwhereINDEX_NAMEin(‘val’,‘primary’)andTABLE_NAMElike’%test%'groupbyindex_name;Emptyset(0.04sec)
可以看出,目前buffer pool中没有关于test表的数据页。

mysql>selectfromtestwhereval=4limit300000,5;±--------±----±-------+|id|val|source|±--------±----±-------+|3327622|4|4||3327632|4|4||3327642|4|4||3327652|4|4||3327662|4|4|±--------±----±-------+5rowsinset(26.19sec)mysql>selectindex_name,count()frominformation_schema.INNODB_BUFFER_PAGEwhereINDEX_NAMEin(‘val’,‘primary’)andTABLE_NAMElike’%test%'groupbyindex_name;±-----------±---------+|index_name|count(*)|±-----------±---------+|PRIMARY|4098||val|208|±-----------±---------+2rowsinset(0.04sec)
可以看出,此时buffer pool中关于test表有4098个数据页,208个索引页。

select * from test a inner join (select id from test where val=4 limit 300000,5) ;为了防止上次试验的影响,我们需要清空buffer pool,重启mysql。

mysqladminshutdown/usr/local/bin/mysqld_safe&
mysql>selectindex_name,count(*)frominformation_schema.INNODB_BUFFER_PAGEwhereINDEX_NAMEin(‘val’,‘primary’)andTABLE_NAMElike’%test%'groupbyindex_name;Emptyset(0.03sec)
运行sql:

mysql>selectfromtestainnerjoin(selectidfromtestwhereval=4limit300000,5)bona.id=b.id;±--------±----±-------±--------+|id|val|source|id|±--------±----±-------±--------+|3327622|4|4|3327622||3327632|4|4|3327632||3327642|4|4|3327642||3327652|4|4|3327652||3327662|4|4|3327662|±--------±----±-------±--------+5rowsinset(0.09sec)mysql>selectindex_name,count()frominformation_schema.INNODB_BUFFER_PAGEwhereINDEX_NAMEin(‘val’,‘primary’)andTABLE_NAMElike’%test%'groupbyindex_name;±-----------±---------+|index_name|count(*)|±-----------±---------+|PRIMARY|5||val|390|±-----------±---------+2rowsinset(0.03sec)
我们可以看明显的看出两者的差别:第一个sql加载了4098个数据页到buffer pool,而第二个sql只加载了5个数据页到buffer pool。符合我们的预测。也证实了为什么第一个sql会慢:读取大量的无用数据行(300000),最后却抛弃掉。而且这会造成一个问题:加载了很多热点不是很高的数据页到buffer pool,会造成buffer pool的污染,占用buffer pool的空间。遇到的问题

为了在每次重启时确保清空buffer pool,我们需要关闭innodb_buffer_pool_dump_at_shutdown和innodb_buffer_pool_load_at_startup,这两个选项能够控制数据库关闭时dump出buffer pool中的数据和在数据库开启时载入在磁盘上备份buffer pool的数据。

想要其他资料的请添加资料分享群934623944就可免费获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值