基于Python的新闻文本分类系统设计 报告+项目源码

目录
程序运行说明 1
背景及任务定义 4
提出方法 5

  1. 残差连接 10
    实验 15
    结论 17
    程序运行说明
    硬件
    GPU: Tesla V100, 32GB显存
    内存:32GB
    系统:Linux(训练),Windows(展示)
    软件
    CUDA版本: 9.2
    Pytorch:1.5
    其他库:gensim,sklearn,tqdm,flask,numpy等
    运行方法
    如果直接使用,步骤为:
    1.进入"Flask"文件夹,在cmd中执行以下命令:python NLP_flask.py,便可启动 flask 后台,然后在浏览器地址栏输入127.0.0.1:5000,即可看到分类系统界面。
    如果需要训练,步骤为:
    1.如果想要训练非bert的模型,需要先训练词向量:进入"src"目录下,在terminal中执行以下命令:python train_w2v.py,修改该文件的代码可以设置word2vec的窗口大小、词向量维度等。
    2.(./src目录)在terminal中输入python run.py --model model_name --word True/False,即可启动相应模型的训练。model_name是选择的模型,word为True(默认)则进行词级别的训练,否则进行字级别的训练。word参数只针对非bert模型,因为bert是分字的。可选的模型会在后面介绍。
    **注意:**训练之前请先下载数据集和bert的相关文件,在相应的文件夹内有README说明文档,内附有百度云盘下载链接。
    代码文件说明
    下面解释./src目录下的代码:
    run.py 训练主程序
    train_eval.py 具体的训练逻辑
    utils.py 工具类函数
    train_w2v.py 训练词向量
    global_config.py 全局参数设置,如batch_size等
    ./model 下是不同模型的实现
    ./temp 下存放了预训练的词向量
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

本文转载自:http://www.biyezuopin.vip/onews.asp?id=15960

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值