基于遗传算法的商品自动定价与补货决策

目录
基于遗传算法的商品自动定价与补货决策 1
【摘要】 1
一、问题重述 3
1.1 引言 3
1.2 问题提出 4
二、问题分析 5
2.1 问题一分析 5
2.1.1 问题细化 5
2.1.2 问题解决 5
2.1.3 问题的结果 5
2.2 问题二分析 6
2.2.1 问题细化 6
2.2.2 问题解决 6
2.2.3 问题的结果 6
2.3 问题三分析 6
2.3.1 问题细化解决 6
2.3.2 问题的结果 7
2.4 问题四分析 7
2.4.1 问题细化 7
2.4.2 问题解决 7
2.4.3 问题的结果 7
三、符号说明 8
五、模型与建立 9
5.1 问题一:品类或单品的销售量分布规律与关系 9
图 1 问题处理流程图 9
5.1.1 数据预处理 9
5.1.2 基于斯皮尔曼( Spearman )相关性分析 10
5.1.3 品类和单品间Spearman 相关性检验关联结果 10
5.1.4 K-means 聚类分析各年份基本规律 13
5.2 问题二:求解未来一周最大利润的补货策略 21
5.2.1 成本加成定价分析 21
5.2.2 拟合成本加成定价与销量函数 20
图 15 拟合结果对比图 23
5.2.3 模型的建立与分析 23
Inijlossi  Xij  0 26
5.2.4 时间序列预测补货总量 27
图 17 品类一批发价预测 28
5.2.5 遗传算法的建立求解 29
图 18 适应度变化图 29
5.3 问题三:遗传算法计算单品补货量与定价策略 30
5.1.1 模型建立与分析 30
 32
 0 32
 32
图 19 适应度变化图 33
5.4 问题四:额外数据信息的采集 34
5.4.1 额外数据信息分析高于实际补货和定价的可行性 34
5.4.2 随机森林回归分析 35
图 20 特征重要性图 35
六、模型评价与推广 37
6.1 模型优点 37
6.2 模型缺点 37
6.3 模型推广 37
七、参考文献 38
附录 38
一、支持材料的文件列表 38
(1) 问题一支撑材料: 1.solvedata.m 2.timesort.m 38
(2) 问题二支撑材料: 1.nihe.m 39
(3) 问题三支撑材料: 39
(4) 问题四支撑材料: 1.get_data.m 39
二、程序源代码 39
1.2问题提出

通过对生鲜社区超市数据统计分析等方法,使得商超收益最大,需考虑诸多因素,如每天所需的具体单品种类、不同单品的进货价格、运输和售卖过程中产生的损耗、销售量与时间的关系和销售空间的限制等,根据本题的所给的基本数据进行分析,研究商超的合理的蔬菜类商品的自动定价与补货决策。
根据商超的不同需求和计划安排,结合其基本定价规则和附件中给出的相关数据以及实际情况,建立数学模型,解决以下问题:
1.蔬菜类商品不同品类或不同单品之间可能存在一定的关联关系,请分析蔬菜各品类及单品销售量的分布规律及相互关系。
2.考虑商超以品类为单位做补货计划,分析各蔬菜品类的销售总量与成本加成定价的关系,并给出各蔬菜品类未来一周(2023 年 7 月 1-7 日)的日补货总量和定价策略,使得商超收益最大。
3.因蔬菜类商品的销售空间有限,商超希望进一步制定单品的补货计划,要求可售单品总数控制在 27-33 个,且各单品订购量满足最小陈列量 2.5 千克的要求。根据 2023 年6 月 24-30 日的可售品种,给出 7 月 1 日的单品补货量和定价策略,在尽量满足市场对各品类蔬菜商品需求的前提下,使得商超收益最大。
4.为了更好地制定蔬菜商品的补货和定价决策,商超还需要采集哪些相关数据,这些数据对解决上述问题有何帮助,给出的意见和理由。

clc;clear;
% 1. 读取数据 - 请将'B.xlsx'替换为您的数据文件名,并将'data(:,2)'根据要预测的列确定
data = xlsread('各品类均批发价.xlsx','A1:F1095'); time_series_data = data(:,1);
out1 = adftest(time_series_data) figure
subplot(121) autocorr(time_series_data) set(gca,'fontsize',15)

subplot(122) parcorr(time_series_data) set(gca,'fontsize',15)

% 2. 划分训练集和测试集 - 这里使用 80%的数据作为训练集,您可以根据需要调整比例
train_size = round(length(time_series_data) * 1); train_data = time_series_data(1:train_size); test_data = time_series_data(train_size+1:end);

% 3. 初始化最小 AIC 和 BIC 以及最优参数 - 选择模型参数的范围(p、d、q 的最大值)
max_p = 5;
max_d = 2;
max_q = 5;



min_aic = Inf; min_bic = Inf; best_p = 0;
best_d = 0;
best_q = 0;

% 4. 循环遍历不同的 p, d, q 值,尝试拟合 ARIMA 模型,并计算 AIC 和 BIC for p = 0:max_p
for d = 0:max_d
for q = 0:max_q
% 创建 ARIMA 模型
Mdl = arima(p, d, q);

% 拟合模型,并计算 AIC 和 BIC try
[EstMdl,~,logL] = estimate(Mdl, train_data, 'Display', 'off');
[aic, bic] = aicbic(logL, p + q + 1, length(train_data));
catch
continue;
end

% 更新最优参数if bic < min_bic
min_aic = aic; min_bic = bic; best_p = p; best_d = d; best_q = q;
end
end
end
end

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值