目录
车道被占用对城市道路通行能力的影响 1
摘 要 1
1 问题重述 2
2 模型假设 3
3. 除事故车辆外的其他车辆严格遵守交通规则,红灯停,绿灯行。 3
3 符号说明 3
4 模型的建立与求解 4
4.1.1 问题一的分析 4
4.1.2 问题一的解答 5
4.2.1 问题二的分析 10
4.2.2 问题二的解答 10
4.3.1 问题三的分析 14
4.3.2 问题三的数据处理 14
4.3.3 问题三的模型的建立 15
(一)第一种方法:非稳态排队论模型 15
(二)第二种方法:分段差分方程模型 21
4.3.4 问题三的解答 22
4.4.1 问题四的分析 22
4.4.2 问题四的数据处理 23
4.4.3 基于问题四确定两种模型的具体形式 23
第一种方法:非稳态排队论模型 23
第二种方法:分段差分方程模型 24
4.4.4 问题四的解答 25
5 模型的优缺点 26
参考文献 26
附录 28
附录2 排队情况的matlab实现 28
1问题重述
车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。一条车道被占用,也可能降低路段所有车道的通行能力。附件中视频1和视频2的两个交通事故处于同一路段的同一横断面,且完全占用两条车道。
问题1:根据视频1(附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。
问题2:根据问题1所得结论,结合视频2(附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异。
问题3:构建数学模型,分析视频1(附件1)中交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系。
问题4:假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段 下游方向需求不变,路段上游车流量为1500pcu/h, 事故发生时车辆初始排队长度为零,且事故持续不撤离。请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路 口。
2模型假设
1.视频中所统计数据真实可靠。
2.排队所占车道车辆数与对应车道行驶方向车辆数成正比,即:车道一车辆数:车道二 车辆数:车道三车辆数=0.21:0.44:0.35。
3.除事故车辆外的其他车辆严格遵守交通规则,红灯停,绿灯行。
4.车辆到达率与正在排队车辆数量无关,无论有多少车在排队,车辆到达率不变。
5.车辆来源是无限的。
6.堵车期间该路段没有其他交通事故发生。
7.在堵车状况下相邻两辆车车头之间间距为7米。
%调用f函数,输入命令ezplot('f(t)',[0,600]);输出时间-队长曲线
%第三问视频1中的排队情况
function m=f(t)
y=0;
for k=0:20
%时间上限为20
if t<(30+60*k)&&t>=(60*k)
y=14+k*1.53-7.15*(t-60*k)/30;
%14是初始车辆数
elseif t>=(30+60*k)&&t<(60*k+60)
y=14+k*1.53-7.15+8.68*(t-30-60*k)/30;
else y=y;
end
end
m=y;
end