1.本课题所涉及的问题在国内(外)的研究现状综述
(1)国外研究现状
近年来,随着人工智能和物联网技术的飞速发展,智能家居控制系统已成为国外学术界和工业界研究的热点。众多学者和企业在这一领域进行了深入探索,取得了一系列显著的研究成果。Smith, J.(2021)在《Deep Learning for Smart Home Control》文中描述了深度学习算法在智能家居设备控制中的应用,提出了基于卷积神经网络(CNN)的识别模型,有效提高了设备识别的准确性和响应速度。Johnson, A.(2020)在《AI-Driven Smart Home Systems》一文中提出了利用人工智能技术优化智能家居系统资源分配的观点,利用基于强化学习的资源调度算法,实现了智能家居系统的高效节能和智能化管理。Smith(2021)在《Smart Home Systems: Current Status and Future Trends》一文中详细描述了智能家居系统的现状与发展趋势,指出了当前智能家居系统主要依赖于先进的传感器技术、云计算和大数据技术,实现了家居环境的智能化管理和控制。Johnson(2020)在《Deep Learning for Smart Home Automation》一文中提出了通过深度学习算法,智能家居系统可以更加准确地识别用户的行为和需求,从而实现更加智能化的家居控制。Roberts(2019)在《Artificial Intelligence in Smart Home Systems: Challenges and Opportunities》一文中,从人工智能的角度分析了智能家居系统面临的挑战和机遇,提出了未来智能家居系统的发展方向,包括更加智能化的家居控制、更加个性化的用户体验以及更加高效的系统能源管理等。
通过上述的文献研究总结,国外在基于深度学习的智能家居控制系统研究方面,主要聚焦于算法优化、识别精度提升以及系统智能化管理等方面,旨在提高智能家居系统的用户体验和能源效率。
(2)国内研究现状
近年来,随着“互联网+”和“智慧城市”等国家战略的深入实施,智能家居控制系统在国内也迎来了快速发展的机遇。众多高校、科研机构和企业纷纷投入资源,开展了一系列与智能家居控制系统相关的研究和开发工作,取得了令人瞩目的成果。李明(2019)在《基于深度神经网络的智能家居语音控制系统》一文中,提出了基于深度神经网络的语音识别算法,实现了对智能家居设备的语音控制,该系统能够准确识别用户的语音指令,并通过智能家居平台实现设备的远程控制。王伟(2021)在《深度学习在智能家居环境监测中的应用》一文中,研究了深度学习算法在智能家居环境监测中的应用,提出了基于长短期记忆网络(LSTM)的空气质量预测模型,能够实时监测并预测室内空气质量,为用户提供舒适的生活环境。张利民教授(2020)在《智能家居系统架构与通信协议研究》一文中,详细分析了智能家居系统的基本架构和通信
02-26
1238
