/***************************************************************
二叉树的遍历操作:对于先序、中序、后序的非递归遍历来说,是借助于栈
来存储,而对于层次遍历来说是借助于队列来存储
具有代表性的实例:在控制台上输入:ABD00E00C00
A
/ \
B C
/ \
D E
****************************************************************/
#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#define STACK_INT_SIZE 100 //存储空间初始分配量
#define STACKINCREMENT 10 //存储空间分配增量
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define OVERFLOW -2
typedef char TElemType;
typedef int Status;
typedef char SElemType;
//二叉树的二叉链表存储表示
typedef struct BiTNode
{
TElemType data;
struct BiTNode *lchild, *rchild; //左右孩子指针
}BiTNode, *BiTree;
//用于存储二叉树结点的栈
typedef struct
{
BiTree *base;
BiTree *top;
int stacksize; //当前已分配的存储空间
}SqStack;
//定义链式队列结点
typedef struct QNode
{
BiTree Queuedata;
struct QNode * next;
}QNode,* QueuePtr;
//定义链式队列
typedef struct
{
QueuePtr front; //
QueuePtr rear;
}LinkQueue;
//创建存储二叉树结点的空栈
Status InitStack(SqStack &S)
{
S.base = (BiTree *) malloc(sizeof(BiTree));
if(!S.base) exit(OVERFLOW);
S.top = S.base;
S.stacksize = STACK_INT_SIZE;
return OK;
}
//存储二叉树结点的栈的取栈顶元素
Status GetTop(SqStack &S, BiTree &e)
{
//若栈不空,则用e返回S的栈顶元素
if(S.top == S.base) return ERROR;
e = *(S.top-1);
return OK;
}
//存储二叉树结点的栈的入栈操作
Status Push(SqStack &S, BiTree e)
{
//插入元素e为栈顶元素
if(S.top - S.base >= S.stacksize)
{ //若栈满,则追加存储空间
S.base = (BiTree *) realloc(S.base, (S.stacksize + STACKINCREMENT)*sizeof(BiTree));
if(!S.base) return ERROR;
S.top = S.base + S.stacksize;
S.stacksize += STACKINCREMENT;
}
*S.top = e;
S.top++;
return OK;
}
//用于存储二叉树结点的栈出栈操作
Status Pop(SqStack &S,BiTree &e)
{
//删除S的栈顶元素,并用e返回
if(S.base == S.top) return ERROR;
S.top--;
e = *S.top;
return OK;
}
//判断存储二叉树结点的栈是否为空
Status StackEmpty(SqStack S)
{
// 若栈S为空栈,则返回TRUE,否则返回FALSE
if(S.top == S.base) return TRUE;
else return FALSE;
}
//先序顺序创建一颗二叉树
Status PreOrderCreateBiTree(BiTree &T)
{
//按先序次序输入二叉树中结点的值
//构造二叉链表表示的二叉树T
char ch;
scanf("%c",&ch);
if(ch == '0') T = NULL;
else
{
//if(!(T = (BiTree ) malloc(sizeof(BiTree)))) exit(OVERFLOW);//作用和下一语句的作用相同,注意两者的区别
if(!(T = (BiTNode* ) malloc(sizeof(BiTNode)))) exit(OVERFLOW);
T->data = ch; //生成根结点
PreOrderCreateBiTree(T->lchild); //构造左子树
PreOrderCreateBiTree(T->rchild); //构造右子树
}
return OK;
} //CreateBiTree
//递归先序遍历二叉树
void PreOrder ( BiTree bt )
{
if ( bt )
{
printf("%c",bt->data); //先访问根节点
PreOrder ( bt->lchild );//遍历左子树
PreOrder ( bt->rchild ); //遍历右子树
}
}
//递归中序遍历二叉树
void Inorder ( BiTree bt )
{
if ( bt )
{
Inorder ( bt->lchild ); //遍历左子树
printf("%c",bt->data);//访问根节点
Inorder ( bt->rchild );//遍历右子树
}
}
//递归后序遍历二叉树
void LastOrder ( BiTree bt )
{
if ( bt )
{
LastOrder( bt->lchild );//遍历左子树
LastOrder( bt->rchild );//遍历右子树
printf("%c",bt->data);//访问根节点
}
}
//非递归先序遍历二叉树 方法一:
Status PreOrderTraverse(BiTree T)
{
SqStack s;
BiTree P=T;
InitStack(s);
while ( P!=NULL || !StackEmpty(s))
{
if (P!=NULL)
{
printf("%c",P->data);
Push(s,P); //访问完之后将根节点入栈
P=P->lchild;
}
else
{
Pop(s,P);
P=P->rchild;
}
}
return OK;
}
//非递归先序遍历二叉树 方法二:
Status PreOrderTraverse2(BiTree T)
{
SqStack s;
BiTree P=T;
InitStack(s);
Push(s,P); //先将根节点入栈
while ( !StackEmpty(s))
{
Pop(s,P);
if (P!=NULL)
{
printf("%c",P->data);//访问根节点
Push(s,P->rchild);// 先进栈,后访问,所以这里先让右子树进栈
Push(s,P->lchild);
}
}
return OK;
}
//非递归中序遍历二叉树
Status InOrderTraverse(BiTree T)
{
//中序遍历二叉树T的非递归算法,对每个数据元素调用函数Visit,也就是printf()函数
SqStack S;
InitStack(S);
BiTree p;
p = T;
/**/
while(p || !StackEmpty(S))
{
if(p)
{
Push(S,p);
p = p->lchild; //根指针进栈,遍历左子树
}
else
{ //根指针退栈,访问根结点,遍历右子树
Pop(S,p);
printf("%c",p->data);
p = p->rchild;
}
}//while
/*和上面的while开始的操作完全等同,可以视为方法二:
Push(S,p);
while (!StackEmpty(S))
{
while (GetTop(S,p) && p)
{
Push(S,p->lchild);
}
Pop(S,p);
if (!StackEmpty(S))
{
Pop(S,p);
printf("%c",p->data);
Push(S,p->rchild);
}
}
*/
return OK;
} //InOrderTraverse
/**/
//非递归后序遍历二叉树 :
Status LastOrderTraverse(BiTree T)
{
//后序遍历时,分别从左子树和右子树共两次返回根结点,
//只有从右子树返回时才访问根结点,所以增加一个栈标记到达结点的次序。
SqStack s,tag;//定义两个栈,一个是存储二叉树结点的栈,一个是存储标志位的栈
//stack2 tag ;
BiTree f,m,n,P=T; //m,n是标志位。f是中间变量,用于检测标志位是m还是n的
m=(BiTNode*)malloc(sizeof(BiTNode)); //注意:此处必须先创建结点,然后再赋值
m->data=1;
m->lchild=NULL;
m->rchild=NULL;
n=(BiTNode*)malloc(sizeof(BiTNode));//注意:此处必须先创建结点,然后再赋值
n->data=2;
n->lchild=NULL;
n->rchild=NULL;
InitStack(s);//此栈用来存放结点
InitStack(tag);//此栈用来存放标志位,从左子树返回根节点时为1,从右子树返回根节点时为2
while (P ||!StackEmpty(s))
{
if (P)
{
Push(s,P);
Push(tag,m);//第一次入栈操作
P=P->lchild;
}
else
{
Pop(s,P);
Pop(tag,f);
if (f==m)
{
// 从左子树返回,二次入栈,然后p转右子树
Push(s,P);
Push( tag, n);//第二次入栈
P=P->rchild;
}
else
{
// 从右子树返回(二次出栈),访问根结点,p转上层
printf("%c",P->data);
P=NULL; // 必须的,使下一步继续退栈
}
}
}
return OK;
}
//初始化一个带头结点的队列
Status InitQueue(LinkQueue &Q)
{
Q.front=(QNode*)malloc(sizeof(QNode));
if (!Q.front)
exit(OVERFLOW);
Q.rear=Q.front;
Q.front->next=NULL;
return OK;
}
//入队列
Status EnQueue(LinkQueue &Q,BiTree e)
{
QueuePtr s=(QueuePtr)malloc(sizeof(QNode));
if (!s)
exit(OVERFLOW);
s->Queuedata=e;
s->next=NULL;
Q.rear->next=s;
Q.rear=s;
return OK;
}
//出队
int DelQueue(LinkQueue &Q, BiTree &e)
{
char data1;
QueuePtr s;
s=Q.front->next;//注意:该队列为带头结点,所以刚开始出队列时,应该去front的next
e=s->Queuedata;//获取对头记录的数据域,类型为BiTree
data1=e->data;//获取BiTree类型的数据域,类型为char
Q.front->next=s->next;
if(Q.rear==s)//队列中只有一个元素
Q.rear=Q.front;
free(s);
return TRUE;
}
//队列的判断空操作
Status QueueEmpty(LinkQueue Q)
{
//队列带头结点,所以需要判断Q.front->next
if (Q.front->next==NULL)
return OK;
else return ERROR;
}
//按层次遍历
Status HierarchyBiTree(BiTree bt)
{
LinkQueue Q; // 保存当前节点的左右孩子的队列
InitQueue(Q); // 初始化队列
BiTree p = bt; // 临时保存树根Root到指针p中
if (bt == NULL) return ERROR; //树为空则返回
EnQueue(Q,p); //先将根节点入队列
while (!QueueEmpty(Q)) // 若队列不空,则层序遍历
{ DelQueue(Q, p); // 出队列
printf("%C",p->data);// 访问当前节点
if (p->lchild)
EnQueue(Q, p->lchild); // 若存在左孩子,左孩子进队列
if (p->rchild)
EnQueue(Q, p->rchild); // 若存在右孩子,右孩子进队列
}
//DelQueue(Q,p); // 释放队列空间
return OK;
}
//求叶子节点个数
int sum=0;//此处一定要定义为全局变量,因为递归调用退出函数的时候局部变量会销毁
int SumLefts(BiTree bt)
{
if (bt!=NULL)
{
if (bt->lchild==NULL && bt->rchild==NULL)
{
//printf("%4c",bt->data);
sum++;
}
sum=SumLefts(bt->lchild);
sum=SumLefts(bt->rchild);
}
return(sum);
}
void main()
{ //注意创建二叉树时,用先序顺序创建
printf("请输入先序建立二叉树所需要的数据(例如ABD0000):");
BiTree t;
PreOrderCreateBiTree(t); //利用先序顺序创建二叉树
printf("先序遍历输出为:");
//PreOrder(t);//先序递归遍历
PreOrderTraverse(t);//先序非递归遍历
printf("\n");
printf("中序遍历输出为:");
//InOrderTraverse(t);//中序非递归遍历
Inorder(t);//中序递归遍历
printf("\n");
printf("后序遍历输出为:");
//LastOrder(t);//后序递归遍历
LastOrderTraverse(t);//后序非递归遍历
printf("\n");
printf("按层次遍历输出为:");
HierarchyBiTree(t);//层次遍历,从上到下,从左到右
printf("\n");
printf("该二叉树中叶子节点个数为:");
int leaves=SumLefts(t);
printf("%d",leaves);
printf("\n");
}