自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(72)
  • 问答 (1)
  • 收藏
  • 关注

原创 同一局域网远程控制其他电脑以及Windows家庭版开启远程桌面等解决方法

家庭版的 Windows 10 和 Windows 11 默认不支持远程桌面功能。然而,我们可以通过使用 RDPWrap 项目并更新配置文件来启用这一功能。并解决了在Windows 10 家庭版中,默认情况下无法使用本地组策略编辑器(gpedit.msc)的问题。

2025-01-24 19:44:24 825

原创 【2025最新整理】EfficientNet与MobileNet系列网络的演进及其创新

EfficientNet和MobileNet系列网络在轻量级、高效神经网络设计中均取得了显著成就。EfficientNet系列通过复合缩放策略和结构优化,实现了高精度和计算资源的平衡,为高性能计算任务提供了解决方案。MobileNet系列则以其深度可分离卷积和优化的瓶颈结构,成为移动和嵌入式设备的理想选择。随着深度学习的发展,这两个系列的不断演进和创新,推动了在资源受限场景下的深度学习应用拓展,极大地促进了人工智能在多种设备和场景中的普及和应用。

2024-11-01 17:18:48 1423

原创 【2025最新整理】ResNet 系列网络的演进及其创新

ResNet系列的每一个变体都基于不同的创新思路,对网络的结构、特征提取方式以及注意力机制进行了多样化的探索。从Wide ResNet的宽度扩展到SENet的通道自适应,再到RegNet的自动化设计,ResNet系列在不断拓展和优化网络结构的同时,也推动了深度学习在计算机视觉领域的应用和发展。这些变体在各自的设计思路上独具特色,成为了现代深度神经网络设计的重要里程碑。

2024-11-01 16:54:29 1997

原创 深度学习中常见的四种数据标准化方法详细解读(StandardScaler、MinMaxScaler、RobustScaler、MaxAbsScaler)

最近,本人在优化深度神经网络模型时发现为了减少预测标签值和真实标签值之间差距,不仅仅需提高模型本身的性能,还关乎于标签值标准化、数据集划分、模型超参数等一系列初始设定。其中后两项的实验内容俗称“炼丹”,很多研究人员已经炉火丹青,运筹帷幄,唯独标签值标准化容易被人忽略。一个优秀的标准化方法不仅能提高模型训练的稳定性,加速收敛,还能增强模型测试性能,可谓是中流砥柱。现有模型训练大多默认选用 StandardScaler(),这本没错,但是如果能够参考标签值分布尝试其他方法,并修改为适合的激活函数。

2024-08-05 11:28:49 2571

原创 深度学习中几种常见数据标准化方法

方法名称缩放范围适用条件均值为0,方差为1数据具有正态分布的情况下效果最佳[0, 1]数据分布不平衡或有明显的上下界限根据四分位数缩放数据包含异常值[-1, 1]数据已经中心化,即没有偏移Normalizer每个样本的范数为1样本之间有显著的差异,需要将其归一化[0,1]或正态分布数据分布不均匀Johnson)均值为0,方差为1数据具有正态分布或接近正态分布非负数据的对数缩放数据必须为正值或非负值:适用于数据本身的分布近似正态分布。

2024-06-09 19:37:22 1868

原创 深度学习中常见的九种交叉验证方法汇总

深度学习中常见的九种交叉验证方法汇总

2024-05-15 20:55:16 3567

原创 Broad Learning System (BLS) 宽度学习系统

宽度学习系统在 RVFLNN 基础上做出了改进。首先,宽度学习可以利用别的模型提取到的特征来训练,即可以和别的机器学习算法灵活地结合。其次,宽度学习中加入了增量学习算法,它允许在网络结构中加入新的结点时,以很小的计算开销来更新网络权重。宽度学习(Broad Learning System, BLS)是一种有效的神经网络学习框架,旨在通过扩展网络的宽度而不是深度来提高学习能力和效率。与传统的深度学习相比,宽度学习通过堆叠多层特征节点和增强节点来构建网络,从而避免了深度学习中常见的梯度消失和复杂的训练过程。

2024-05-15 20:27:01 2283 2

原创 GAN及其衍生网络中生成器和判别器常见的十大激活函数(2024最新整理)

激活函数(activation function)的作用是对网络提取到的特征信息进行非线性映射,提供网络非线性建模的能力。常见的激活函数有 Sigmoid、Tanh、ReLU、LeakyReLU 和 ELU 等。Sigmoid 是一种常见的非线性激活函数,输入实数值并将其压缩到 (0,1) 范围内,适用于。其缺点是当输入值较大和较小时,梯度会接近于0从而问题,函数的输出也,指数也更加耗时。

2024-03-17 21:23:27 1552

原创 近红外光谱开源数据集(附带获取链接)

1、使用近红外(NIR)分析玻璃瓶中的216个颗粒样本来预测活性药物成分(API)4、使用近红外(NIR)/近中红外(NIT)和拉曼光谱分析片剂中的活性物质。2、使用近红外(NIR)测量存储过程中面包的老化情况,并对其进行酶处理。5、使用近红外(NIR)和红外(IR)光谱分析32个杏仁蛋白软糖样本。6、对土豆进行感官和物理(单轴压缩、近红外、低场核磁共振)质地测量。3、使用近红外(NIR)/近中红外(NIT)分析单个小麦籽粒。10、玉米样本的近红外(NIR)标准化基准测试数据集。

2024-03-12 12:02:00 2590

原创 【激活函数】Softmax 和 Maxout 激活函数

已经有前辈撰写关于讲解这两个激活函数并且通俗易懂的文章了,本人在此就不赘述,链接奉上,内容值得细细品读。

2024-01-10 11:02:25 569

原创 【激活函数】PReLU 激活函数

PReLU(Parametric Rectified Linear Unit)激活函数是ReLU(Rectified Linear Unit)激活函数的一种改进。它是由 He et al. 在 2015 年提出的,旨在解决ReLU激活函数的一些局限性。

2024-01-06 16:37:19 2334

原创 【激活函数】SELU 激活函数

SELU (Scaled Exponential Linear Unit) SELU是对ELU激活函数的改进,通过引入自动标准化机制,使得神经网络的隐藏层在训练过程中可以自动地保持输出的均值和方差接近于1。

2024-01-06 12:45:10 4304

原创 【激活函数】GELU 激活函数

GELU (Gaussian Error Linear Units) 是一种基于高斯误差函数的激活函数,相较于 ReLU 等激活函数,GELU 更加平滑,有助于提高训练过程的收敛速度和性能。

2024-01-05 14:23:27 3640

原创 【激活函数】深度学习中你必须了解的几种激活函数 Sigmoid、Tanh、ReLU、LeakyReLU 和 ELU 激活函数(2024最新整理)

激活函数(activation function)的作用是对网络提取到的特征信息进行非线性映射,提供网络非线性建模的能力。常见的激活函数有 Sigmoid、Tanh、ReLU、LeakyReLU 和 ELU 等。

2024-01-05 13:57:06 1588

原创 【损失函数】深度学习回归任务中你必须了解的三种损失函数,绝对误差损失(L1 Loss、MAE)均方误差损失(L2 Loss、MSE)以及平滑L1损失(Huber Loss)(2024最新整理)

是预测值和真实值之差的绝对值的总和。其中,是样本数量,是第个样本的真实值,是第个样本的预测值。

2024-01-04 11:32:08 11537

原创 【损失函数】Hinge Loss 合页损失

Hinge Loss(合页损失)通常用于支持向量机(Support Vector Machine,SVM)等模型中,特别是在二分类问题中。它的目标是使正确类别的分数与错误类别的最高分之间的差异达到一个固定的边界,从而促使模型学会产生更大的间隔。

2024-01-04 11:31:13 5787 1

原创 【损失函数】Cross Entropy Loss 交叉熵损失

对于分类问题,最常用的损失函数是交叉熵损失函数 Cross Entropy Loss。它用于测量两个概率分布之间的差异,通常用于评估分类模型的性能。

2024-01-03 20:47:34 815

原创 【损失函数】Quantile Loss 分位数损失

Quantile Loss(分位数损失)是用于回归问题的一种损失函数,它允许我们对不同分位数的预测误差赋予不同的权重。这对于处理不同置信水平的预测非常有用,例如在风险管理等领域。当我们需要对区间预测而不单是点预测时分位数损失函数可以发挥很大作用。

2024-01-03 20:31:25 6573

原创 【损失函数】SmoothL1Loss 平滑L1损失函数

SmoothL1Loss 平滑L1损失函数 是 PyTorch 中的一个损失函数,通常用于回归问题。它是 L1 损失和 L2 损失的结合,旨在减少对异常值的敏感性。

2023-12-28 16:15:31 2857 2

原创 【深度学习】各领域常用的损失函数汇总(2024最新版)

以下是一些常用的损失函数,可根据不同的应用场景进行选择和组合:适用于回归任务,L1 损失计算预测值与真实值之间差的绝对值,对异常值不那么敏感。其中,是样本数量,是第个样本的真实值,是第个样本的预测值。更适合处理异常值,因为它不会像 L2 损失那样对较大的误差赋予过高的惩罚。

2023-12-28 16:09:43 3327

原创 Vue导入Echarts实现散点图 axios解析excel流数据 echarts数据可视化前端展示

得到Excel文件流数据后,可以使用wb.Sheets[wb.SheetNames[0]]函数获取Sheets中第一个Sheet的数据。使用插件SheetJS使用XLSX.utils.sheet_to_json()解析excel,给空的单元格赋值为空字符串。给url这个对象添加一个nocache的参数,属性为timestamp,值为时间戳,原理是实时更改url,浏览器判断缓存内容不同,就会正常更新数据。以下为其他尝试Json转数组的方法,echarts均不可识别,如果有明白的大佬请留言解释下。

2023-07-17 12:50:48 1049

原创 Django_rest_framework-drf 笔记

里的字段,是做模糊查询的字段;里的字段,是做精确查询的字段。

2023-07-16 13:23:12 1035

原创 【Django】 python manage.py makemigrations & python manage.py migrate命令解答及不能新建表解决方法

这个文件里面的内容表示我们创建了一个Project这个模型类,并且指出这个类的成员属性id、name等以及定义,在models.py创建模型类,其中一个模型类对应的是一张数据表,然而这条命令并未真正添加数据库表。由于Django自带的一个表django_migrations表中已经将之前生成的表添加进入了,比如。2、运行中会对managed=true的model进行检测,是否有多个model使用了同一个表名。表示通知Django即将做什么,并做一个记录,实际上并没有做。

2023-07-08 12:07:45 5757

原创 【实验练习】基于自注意力机制Vision Transformer模型实现人脸朝向识别 (Python实现) 内容原创

基于自注意力机制Vision Transformer模型实现人脸朝向识别

2023-06-06 12:07:01 1588

原创 【实验练习】基于SVM的实现鸢尾花(Iris)数据集分类 (Python实现)

基于SVM的实现鸢尾花(Iris)数据集分类

2023-06-05 21:59:11 7141 9

原创 【实验练习】基于BP神经网络的语音特征信号分类(Python实现) 内容原创

基于BP神经网络的语音特征信号分类

2023-06-05 21:23:23 421 1

原创 [已解决] 决定系数R2为何为负 from sklearn.metrics import r2_score

决定系数R2为何为负 from sklearn.metrics import r2_score

2023-05-26 13:36:10 20143 14

原创 简单理解Transformer注意力机制

简单理解Transformer注意力机制

2023-05-06 11:53:21 799

原创 AutoML自动机器学习架构以及AutoKeras、AutoGluon

AutoML自动机器学习架构以及AutoKeras、AutoGluon

2023-05-06 11:46:43 483

原创 【论文笔记】A classification model for detection of ductal carcinoma in situ by Fourier transform infrared

在本研究中,我们提出了一种基于深度结构化语义模型(DSSM)的光谱分类模型,并成功地将其应用于傅里叶变换红外(FT-IR)光谱分析,用于导管原位癌(DCIS)的检测。与传统的深度学习模型相比,我们根据光谱是否来自同一类别,将光谱数据分为正对和负对。根据光谱对的光谱相似性提取特征,构建了DSSM结构。这种新的构造模型增加了用于模型训练的数据量,并降低了光谱数据的维数。首先,对FT-IR光谱进行配对。如果光谱对来自同一类别,则被标记为正对;如果光谱对来自不同的类别,则被标记为负对。

2023-04-26 16:54:09 231 1

原创 化学(光谱学方向)SCI期刊汇总

化学(光谱学方向)SCI期刊汇总

2023-04-26 14:29:59 1841

原创 【Transformer&CNN&TiDE】从CNN到ViT,再从ViT到TiDE,回顾近十年顶刊和会议发表的关于Attention自注意力、Conv卷积机制以及最新诞生的TiDE模型的发展历程

从CNN到ViT,再从ViT到TiDE,回顾近十年顶刊和会议发表的关于Attention自注意力、Conv卷积机制以及最新诞生的TiDE模型的发展历程

2023-04-23 13:18:15 3680 2

原创 python 理解BN、LN、IN、GN归一化、分析torch.nn.LayerNorm()和torch.var()工作原理

最近在学习Vit(Vision Transformer)模型,在构建自注意力层(Attention)和前馈网络层(MLP)时,用到了torch.nn.LayerNorm(dim),也就是LN归一化,与常见卷积神经网络(CNN)所使用的BN归一化略有不同。

2023-04-15 15:17:41 3949 3

原创 【论文笔记】Attention Augmented Convolutional Networks(ICCV 2019 入选文章)

核心内容:We propose to augment convolutional operators with this self-attention mechanism by concatenating convolutional feature maps with a set of feature maps produced via self-attention.我们提出用这种自注意机制来增强卷积算子,方法是将卷积特征映射与通过自注意产生的一组特征映射连接起来。

2023-04-13 18:57:24 1376 1

原创 【深度学习】端到端的“即插即用“卷积模块以替代传统Conv层

文章参考:大盘点 | 十大即插即用的涨点神器! (360doc.com)CompConv:一种用于高效特征学习的紧凑型卷积模块 - 知乎 (zhihu.com) 紧凑型深度卷积神经网络在图像识别中的应用 (ceaj.org)

2023-04-12 18:53:27 1488

原创 【深度学习】DSSM双塔模型结构解析

推荐系统中不得不说的 DSSM 双塔模型 - 知乎 (zhihu.com) 深度语义匹配模型DSSM及其变体CNN-DSSM, LSTM-DSSM - 知乎 (zhihu.com) (19条消息) 图解Transformer+DSSM_transformer dssm是啥_a flying bird的博客-CSDN博客

2023-04-10 17:38:56 262

原创 【深度学习】Transformer/VitNet/Conformer/DSSM模型结构解析

【深度学习】Transformer/VitNet/Conformer/DSSM模型结构解析

2023-04-08 13:41:16 827

原创 【深度学习】Inception模型结构解析,关键词:Inception-v1、v2、v3、v4、Inception-ResNet-v1、Inception-ResNet-v2

【深度学习】Inception模型结构解析,关键词:Inception-v1、v2、v3、v4、Inception-ResNet-v1、Inception-ResNet-v2

2023-03-29 14:30:18 10520 1

原创 [已解决] Interpreter ‘/usr/bin/python‘ doesn‘t exist onremote server

[已解决] Interpreter '/usr/bin/python' doesn't exist onremote server

2023-03-26 18:06:14 1990

原创 [已解决] Latex编译tex文件报错:I found no \citation commands(适用于未引用文献的前提)

[已解决] Latex编译tex文件报错:I found no \citation commands(适用于未引用文献的前提)

2023-03-26 16:40:14 13218

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除