文章目录
"唰"的一声我的接口响应时间从500ms降到了15ms!自从去年把Django项目迁移到FastAPI,头发都少掉了一半(程序员の胜利✌)!今天就带大伙见识见识这个让Python飞起来的现代Web框架!
一、为什么说FastAPI是Python圈的"歼20"?
还记得当年被Flask的路由装饰器支配的恐惧吗?(路由一多就分不清东南西北)FastAPI直接把类型提示玩出花!看看这个反人类的性能对比:
- Flask:每秒处理1200个请求
- Django:每秒950个请求
- FastAPI:每秒58000个请求!!!
(OS:这特么是Python能跑出来的速度?)秘密就在于它底层用了Starlette和Pydantic这对王炸组合。更离谱的是,这货居然还能自动生成Swagger文档!写代码=写文档的时代终于来了!
二、5分钟极速上手指南
准备好你的Python3.7+环境(别跟我说还在用Python2,那得去博物馆找你了)
pip install fastapi[all]
新建个rocket.py
文件:
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class User(BaseModel):
name: str
level: int = 42 # 默认值直接写在模型里!
@app.get("/")
async def hello():
return {"message": "前方高能!"}
@app.post("/users/")
async def create_user(user: User):
return {"username": user.name, "level": user.level*2}
运行命令:
uvicorn rocket:app --reload
打开http://localhost:8000/docs 你会看到自动生成的交互式文档!(直接在线测试API的感觉不要太爽)
三、六大必杀技深度解析
1. 类型提示开挂模式
(别找了这是假图)看看这个参数验证:
from typing import Annotated
from fastapi import Query
@app.get("/items/")
async def read_items(
q: Annotated[str | None, Query(max_length=50)] = None
):
return {"q": q}
不用写任何校验代码,自动帮你检查参数长度!参数超过50字符直接返回422错误!
2. 异步支持爽到飞起
用async/await
处理IO密集型操作:
@app.get("/news")
async def fetch_news():
data = await some_async_api_call() # 这里可以安心await
return {"news": data}
3. 依赖注入的黑科技
创建个验证函数:
from fastapi import Depends
def check_token(token: str = Header(...)):
if token != "secret":
raise HTTPException(status_code=400)
return True
@app.get("/secret")
async def get_secret(is_valid: bool = Depends(check_token)):
return {"secret": "不能说的秘密"}
4. WebSocket实时飞起
做个简易聊天室:
from fastapi import WebSocket
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
while True:
data = await websocket.receive_text()
await websocket.send_text(f"你说:{data}")
5. 后台任务异步执行
发邮件不用等:
from fastapi import BackgroundTasks
def send_email(email: str):
# 模拟发邮件操作
print(f"Sending email to {email}")
@app.post("/register")
async def register_user(
email: str,
background_tasks: BackgroundTasks
):
background_tasks.add_task(send_email, email)
return {"msg": "注册成功,邮件稍后送达"}
6. 中间件随心配
加个响应时间监控:
import time
@app.middleware("http")
async def add_process_time_header(request, call_next):
start_time = time.time()
response = await call_next(request)
process_time = time.time() - start_time
response.headers["X-Process-Time"] = str(process_time)
return response
四、真实项目踩坑指南
去年用FastAPI重构电商系统时遇到的奇葩问题:
-
循环导入陷阱:
路由文件引入模型,模型文件又引入工具类,工具类又导入路由…(死循环警告!)
解决方案:用typing.TYPE_CHECKING
条件导入 -
异步上下文管理器:
数据库连接池要用async with
,普通with会阻塞事件循环 -
Pydantic的高级玩法:
用@validator
玩花式校验:
from pydantic import validator
class Item(BaseModel):
price: float
@validator("price")
def check_price(cls, v):
if v < 0:
raise ValueError("价格不能为负!")
return round(v, 2)
五、性能调优三板斧
- 上uvloop加速器:
import uvloop
uvloop.install()
直接提速30%不解释!
- 用ORJSONResponse:
from fastapi.responses import ORJSONResponse
@app.get("/fast", response_class=ORJSONResponse)
async def ultra_fast():
return {"message": "闪电侠模式启动"}
- 开启Gzip压缩:
from fastapi.middleware.gzip import GZipMiddleware
app.add_middleware(GZipMiddleware, minimum_size=1000)
六、学完能干什么?
- 开发高性能微服务(响应速度吊打其他Python框架)
- 快速搭建数据API(配合Pandas原地起飞)
- 实时应用开发(WebSocket爽到飞起)
- 机器学习模型部署(秒级响应推理请求)
还在等什么?赶紧把项目里的Flask/Django换成FastAPI吧!(秃头警告:代码写太快容易上头)