如何提高深度学习的泛化能力?

数据增强

在样本有限的情况下,采用数据增强的方法对原有样本进行变换:

  • 平移、旋转、镜像翻转

  • 几何变换、对比度变换、颜色变换、添加随机噪声、图像模糊

  • 弹性变换算法:双线性插值、双三次插值

预处理

  • 均值减法:每个图像,减去所有图像的均值,使整个训练样本均值为0
  • 均一化:对样本图像进行均值减法后,再除以标准差,使整个训练样本均值为0,方差为1
  • 白化(ZCA):用到奇异值分解,使图像中物体的边缘更加清晰

Dropout

在网络的训练过程中,按照预先设定的概率将一部分中间层的单元暂时从网络中丢弃,通过把该单元的输出设置为0使其不工作,来避免过拟合。但是对被舍弃单元进行误差反向传播计算时,仍使用被舍弃之前的原始输出值

可用于训练包含全连接层的神经网络

训练完后,在识别时使用全部单元。对经过Dropout处理过的层要多乘一次训练时设定的概率(因为训练时舍弃了一部分,这时候识别要用全部的,多了)

DropConnect

与Dropout相似,DropCnooect是按照概率将一部分权重设置为0。相比之下,DropConnect更不容易发生过拟合

但是,没有免费的午餐,DropConnect训练难度更大,对随机数的依赖更高,所以Dropout使用更普遍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有理想、有本领、有担当的有志青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值