python pytest-mock插件

pytest-mock 是一个非常有用的 pytest 插件,它允许你在测试中轻松地创建 mock 对象。通过这个插件,你可以模拟(mock)出函数、类、方法等的行为,这对于接口自动化测试特别有用,因为你可以模拟外部依赖或难以测试的部分。

使用场景

假设你正在编写一个接口自动化测试,该接口依赖于一个外部服务来获取数据。为了确保你的测试能够独立运行并且不受外部服务的影响,你可以使用 pytest-mock 来模拟这个外部服务的行为。

示例代码

假设有一个简单的 Python 应用程序,它通过调用 get_data_from_service() 函数从外部服务获取数据,并使用这些数据进行一些业务逻辑处理。我们想要测试这部分逻辑,但是不想真正调用外部服务。


# app.py

import requests

def get_data_from_service():

response = requests.get('https://example.com/api/data')

return response.json()

def process_data(data):

# 假设我们想确保 data['value'] 大于 10

if data['value'] > 10:

return True

return False

测试代码

接下来,我们将编写一个测试文件 test_app.py,在这个文件中使用 pytest-mock 来模拟 get_data_from_service 函数的行为。


# test_app.py

import pytest

from app import process_data

def test_process_data(mocker):

# 模拟 get_data_from_service 函数的返回值

mocker.patch('app.get_data_from_service', return_value={'value': 20})

# 测试 process_data 函数

assert process_data(get_data_from_service()) is True

注意事项

命名空间:

当你使用 mocker.patch 时,确保提供的路径正确。如果 get_data_from_service 在不同的模块中定义,则需要提供正确的完整路径。

作用域:

默认情况下,mocks 在整个测试函数的作用域内有效。如果你需要更细粒度的控制,可以考虑使用 mocker.patch.object 或者指定 mocker.patch 的作用域。

清理:

pytest-mock 自动清理所有的 mocks,因此你不必担心清理工作。

副作用:

如果你的函数有副作用(例如修改全局状态),确保这些副作用不会影响其他测试。

Mock 的属性:

mocker.Mock 和 mocker.NonCallableMock 可以用来创建具有特定属性和方法的 mock 对象。

输出示例

当你运行测试时,如果没有问题,输出会显示测试成功。以下是使用 pytest 命令运行上述测试的示例输出:


$ pytest test_app.py

============================= test session starts ==============================

platform linux -- Python 3.10.6, pytest-7.2.0, pluggy-1.0.0

rootdir: /path/to/project

collected 1 item

test_app.py . [100%]

============================== 1 passed in 0.01s ===============================

这里,“.”表示测试成功。如果有失败或者错误,你会看到更详细的输出。

高级示例

1. 模拟类和对象

场景: 当你需要模拟一个类的行为时,可以使用 mocker.Mock 或 mocker.NonCallableMock。


import pytest

from app import MyClass

class TestMyClass:

def test_method(self, mocker):

# 创建一个模拟的类实例

mock_instance = mocker.Mock()

mock_instance.method.return_value = "mocked_value"

# 替换 MyClass 的实例为模拟实例

mocker.patch('app.MyClass', return_value=mock_instance)

# 测试 MyClass 的方法

my_instance = MyClass()

result = my_instance.method()

assert result == "mocked_value"

2. 模拟模块和包

场景: 当你需要模拟一个模块或包中的多个函数时,可以使用 mocker.patch.dict。


import pytest

from app import module

class TestModule:

def test_module_functions(self, mocker):

# 创建一个模拟的字典

mocked_module = {

'func1': mocker.Mock(return_value="mocked_func1"),

'func2': mocker.Mock(return_value="mocked_func2")

}

# 替换整个模块

mocker.patch.dict('app.module.__dict__', mocked_module)

# 测试模块中的函数

assert module.func1() == "mocked_func1"

assert module.func2() == "mocked_func2"

3. 模拟外部库或第三方服务

场景: 当你需要模拟外部库或第三方服务的行为时,可以使用 mocker.patch。


import pytest

import requests

from app import get_data_from_service

class TestGetData:

def test_get_data(self, mocker):

# 模拟 requests.get

mocker.patch('requests.get', return_value=mocker.Mock(json=lambda: {"value": 20}))

# 测试 get_data_from_service

data = get_data_from_service()

assert data["value"] == 20

4. 模拟异步函数

场景: 当你需要模拟异步函数时,可以使用 mocker.AsyncMock。


import pytest

import asyncio

from app import async_get_data_from_service

class TestAsyncGetData:

async def test_async_get_data(self, mocker):

# 模拟异步函数

mock_response = mocker.AsyncMock()

mock_response.json.return_value = {"value": 20}

# 替换 async_get_data_from_service 中的请求

mocker.patch('app.async_get_data_from_service', new=mock_response)

# 测试异步函数

data = await async_get_data_from_service()

assert data["value"] == 20

5. 模拟异常抛出

场景: 当你需要模拟函数抛出异常时,可以使用 side_effect。


import pytest

from app import get_data_from_service

class TestGetData:

def test_get_data_exception(self, mocker):

# 模拟 requests.get 抛出异常

mocker.patch('requests.get', side_effect=requests.exceptions.RequestException)

# 测试 get_data_from_service

with pytest.raises(requests.exceptions.RequestException):

get_data_from_service()

6. 模拟多个返回值

场景: 当你需要模拟函数返回不同的值时,可以使用 side_effect 传递一个列表或生成器。


import pytest

from app import get_data_from_service

class TestGetData:

def test_get_data_multiple_values(self, mocker):

# 模拟 requests.get 返回不同的值

mocker.patch('requests.get', side_effect=[{"value": 20}, {"value": 30}])

# 测试 get_data_from_service

data1 = get_data_from_service()

data2 = get_data_from_service()

assert data1["value"] == 20

assert data2["value"] == 30

7. 模拟属性

场景: 当你需要模拟对象的属性时,可以使用 mocker.PropertyMock。


import pytest

from app import MyClass

class TestMyClass:

def test_property(self, mocker):

# 创建模拟的属性

mock_property = mocker.PropertyMock(return_value="mocked_value")

# 替换 MyClass 的属性

mocker.patch('app.MyClass.property', new_callable=mock_property)

# 测试 MyClass 的属性

my_instance = MyClass()

assert my_instance.property == "mocked_value"

8. 模拟外部服务的认证机制

场景: 当你需要模拟外部服务的认证机制时,可以使用 mocker.patch 来模拟认证函数。


import pytest

from app import authenticate_and_get_data

class TestAuthentication:

def test_authenticate_and_get_data(self, mocker):

# 模拟 authenticate 函数

mocker.patch('app.authenticate', return_value=True)

# 测试 authenticate_and_get_data

data = authenticate_and_get_data()

assert data["value"] == 20

注意事项

作用域:

确保你的模拟是在适当的测试作用域内进行的,避免影响其他测试。

清理:

pytest-mock 会在每次测试后自动清理模拟的对象,但如果手动创建了模拟对象,确保正确地使用 mocker.resetall() 或 mocker.restore()。

副作用:

当模拟函数时,确保没有副作用会影响到其他测试或实际的应用逻辑。

文档和调试:

使用模拟时,确保你的代码中有足够的注释,以便其他人能够理解为什么需要模拟某部分逻辑。

最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:【文末自行领取】

这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值