接口自动化测试框架详解(pytest+allure+aiohttp+ 用例自动生成)

 近期准备优先做接口测试的覆盖,为此需要开发一个测试框架,经过思考,这次依然想做点儿不一样的东西。

  • 接口测试是比较讲究效率的,测试人员会希望很快能得到结果反馈,然而接口的数量一般都很多,而且会越来越多,所以提高执行效率很有必要
  • 接口测试的用例其实也可以用来兼做简单的压力测试,而压力测试需要并发
  • 接口测试的用例有很多重复的东西,测试人员应该只需要关注接口测试的设计,这些重复劳动最好自动化来做pytest和allure太好用了,新框架要集成它们
  • 接口测试的用例应该尽量简洁,最好用yaml,这样数据能直接映射为请求数据,写起用例来跟做填空题一样,便于向没有自动化经验的成员推广 加上我对Python的协程很感兴趣,也学了一段时间,一直希望学以致用,所以http请求我决定用aiohttp来实现。 但是pytest是不支持事件循环的,如果想把它们结合还需要一番功夫。于是继续思考,思考的结果是其实我可以把整个事情分为两部分。 第一部分,读取yaml测试用例,http请求测试接口,收集测试数据。 第二部分,根据测试数据,动态生成pytest认可的测试用例,然后执行,生成测试报告。 这样一来,两者就能完美结合了,也完美符合我所做的设想。想法既定,接着 就是实现了。

第一部分(整个过程都要求是异步非阻塞的)

读取yaml测试用例

一份简单的用例模板我是这样设计的,这样的好处是,参数名和aiohttp.ClientSession().request(method,url,**kwargs)是直接对应上的,我可以不费力气的直接传给请求方法,避免各种转换,简洁优雅,表达力又强。


args:

- post

- /xxx/add

kwargs:

-

caseName: 新增xxx

data:

name: ${gen_uid(10)}

validator:

-

json:

successed: True

异步读取文件可以使用aiofiles这个第三方库,yaml_load是一个协程,可以保证主进程读取yaml测试用例时不被阻塞,通过await yaml_load()便能获取测试用例的数据


async def yaml_load(dir='', file=''):

"""

异步读取yaml文件,并转义其中的特殊值

:param file:

:return:

"""

if dir:

file = os.path.join(dir, file)

async with aiofiles.open(file, 'r', encoding='utf-8', errors='ignore') as f:

data = await f.read()


data = yaml.load(data)


# 匹配函数调用形式的语法

pattern_function = re.compile(r'^\${([A-Za-z_]+\w*\(.*\))}$')

pattern_function2 = re.compile(r'^\${(.*)}$')

# 匹配取默认值的语法

pattern_function3 = re.compile(r'^\$\((.*)\)$')


def my_iter(data):

"""

递归测试用例,根据不同数据类型做相应处理,将模板语法转化为正常值

:param data:

:return:

"""

if isinstance(data, (list, tuple)):

for index, _data in enumerate(data):

data[index] = my_iter(_data) or _data

elif isinstance(data, dict):

for k, v in data.items():

data[k] = my_iter(v) or v

elif isinstance(data, (str, bytes)):

m = pattern_function.match(data)

if not m:

m = pattern_function2.match(data)

if m:

return eval(m.group(1))

if not m:

m = pattern_function3.match(data)

if m:

K, k = m.group(1).split(':')

return bxmat.default_values.get(K).get(k)


return data


my_iter(data)


return BXMDict(data)

可以看到,测试用例还支持一定的模板语法,如${function}、$(a:b)等,这能在很大程度上拓展测试人员用例编写的能力

http请求测试接口

http请求可以直接用aiohttp.ClientSession().request(method,url,**kwargs),http也是一个协程,可以保证网络请求时不被阻塞,通过await http()便可以拿到接口测试数据


async def http(domain, *args, **kwargs):

"""

http请求处理器

:param domain: 服务地址

:param args:

:param kwargs:

:return:

"""

method, api = args

arguments = kwargs.get('data') or kwargs.get('params') or kwargs.get('json') or {}


# kwargs中加入token

kwargs.setdefault('headers', {}).update({'token': bxmat.token})

# 拼接服务地址和api

url = ''.join([domain, api])


async with ClientSession() as session:

async with session.request(method, url, **kwargs) as response:

res = await response_handler(response)

return {

'response': res,

'url': url,

'arguments': arguments

}

收集测试数据

协程的并发真的很快,这里为了避免服务响应不过来导致熔断,可以引入


async def entrace(test_cases, loop, semaphore=None):

"""

http执行入口

:param test_cases:

:param semaphore:

:return:

"""

res = BXMDict()

# 在CookieJar的update_cookies方法中,如果unsafe=False并且访问的是IP地址,客户端是不会更新cookie信息

# 这就导致session不能正确处理登录态的问题

# 所以这里使用的cookie_jar参数使用手动生成的CookieJar对象,并将其unsafe设置为True

async with ClientSession(loop=loop, cookie_jar=CookieJar(unsafe=True), headers={'token': bxmat.token}) as session:

await advertise_cms_login(session)

if semaphore:

async with semaphore:

for test_case in test_cases:

data = await one(session, case_name=test_case)

res.setdefault(data.pop('case_dir'), BXMList()).append(data)

else:

for test_case in test_cases:

data = await one(session, case_name=test_case)

res.setdefault(data.pop('case_dir'), BXMList()).append(data)


return res



async def one(session, case_dir='', case_name=''):

"""

一份测试用例执行的全过程,包括读取.yml测试用例,执行http请求,返回请求结果

所有操作都是异步非阻塞的

:param session: session会话

:param case_dir: 用例目录

:param case_name: 用例名称

:return:

"""

project_name = case_name.split(os.sep)[1]

domain = bxmat.url.get(project_name)

test_data = await yaml_load(dir=case_dir, file=case_name)

result = BXMDict({

'case_dir': os.path.dirname(case_name),

'api': test_data.args[1].replace('/', '_'),

})

if isinstance(test_data.kwargs, list):

for index, each_data in enumerate(test_data.kwargs):

step_name = each_data.pop('caseName')

r = await http(session, domain, *test_data.args, **each_data)

r.update({'case_name': step_name})

result.setdefault('responses', BXMList()).append({

'response': r,

'validator': test_data.validator[index]

})

else:

step_name = test_data.kwargs.pop('caseName')

r = await http(session, domain, *test_data.args, **test_data.kwargs)

r.update({'case_name': step_name})

result.setdefault('responses', BXMList()).append({

'response': r,

'validator': test_data.validator

})


return result

事件循环负责执行协程并返回结果,在最后的结果收集中,我用测试用例目录来对结果进行了分类,这为接下来的自动生成pytest认可的测试用例打下了良好的基础


def main(test_cases):

"""

事件循环主函数,负责所有接口请求的执行

:param test_cases:

:return:

"""

loop = asyncio.get_event_loop()

semaphore = asyncio.Semaphore(bxmat.semaphore)

# 需要处理的任务

# tasks = [asyncio.ensure_future(one(case_name=test_case, semaphore=semaphore)) for test_case in test_cases]

task = loop.create_task(entrace(test_cases, loop, semaphore))

# 将协程注册到事件循环,并启动事件循环

try:

# loop.run_until_complete(asyncio.gather(*tasks))

loop.run_until_complete(task)

finally:

loop.close()


return task.result()

第二部分

动态生成pytest认可的测试用例

首先说明下pytest的运行机制,pytest首先会在当前目录下找conftest.py文件,如果找到了,则先运行它,然后根据命令行参数去指定的目录下找test开头或结尾的.py文件,如果找到了,如果找到了,再分析fixture,如果有session或module类型的,并且参数autotest=True或标记了pytest.mark.usefixtures(a...),则先运行它们;再去依次找类、方法等,规则类似。大概就是这样一个过程。

可以看出,pytest测试运行起来的关键是,必须有至少一个被pytest发现机制认可的testxx.py文件,文件中有TestxxClass类,类中至少有一个def testxx(self)方法。

现在并没有任何pytest认可的测试文件,所以我的想法是先创建一个引导型的测试文件,它负责让pytest动起来。可以用pytest.skip()让其中的测试方法跳过。然后我们的目标是在pytest动起来之后,怎么动态生成用例,然后发现这些用例,执行这些用例,生成测试报告,一气呵成。


# test_bootstrap.py

import pytest

class TestStarter(object):

def test_start(self):

pytest.skip('此为测试启动方法, 不执行')

我想到的是通过fixture,因为fixture有setup的能力,这样我通过定义一个scope为session的fixture,然后在TestStarter上面标记use,就可以在导入TestStarter之前预先处理一些事情,那么我把生成用例的操作放在这个fixture里就能完成目标了。


# test_bootstrap.py

import pytest


@pytest.mark.usefixtures('te', 'test_cases')

class TestStarter(object):


def test_start(self):

pytest.skip('此为测试启动方法, 不执行')

pytest有个--rootdir参数,该fixture的核心目的就是,通过--rootdir获取到目标目录,找出里面的.yml测试文件,运行后获得测试数据,然后为每个目录创建一份testxx.py的测试文件,文件内容就是content变量的内容,然后把这些参数再传给pytest.main()方法执行测试用例的测试,也就是在pytest内部再运行了一个pytest!最后把生成的测试文件删除。注意该fixture要定义在conftest.py里面,因为pytest对于conftest中定义的内容有自发现能力,不需要额外导入。


# conftest.py

@pytest.fixture(scope='session')

def test_cases(request):

"""

测试用例生成处理

:param request:

:return:

"""

var = request.config.getoption("--rootdir")

test_file = request.config.getoption("--tf")

env = request.config.getoption("--te")

cases = []

if test_file:

cases = [test_file]

else:

if os.path.isdir(var):

for root, dirs, files in os.walk(var):

if re.match(r'\w+', root):

if files:

cases.extend([os.path.join(root, file) for file in files if file.endswith('yml')])


data = main(cases)


content = """

import allure

from conftest import CaseMetaClass

@allure.feature('{}接口测试({}项目)')

class Test{}API(object, metaclass=CaseMetaClass):

test_cases_data = {}

"""

test_cases_files = []

if os.path.isdir(var):

for root, dirs, files in os.walk(var):

if not ('.' in root or '__' in root):

if files:

case_name = os.path.basename(root)

project_name = os.path.basename(os.path.dirname(root))

test_case_file = os.path.join(root, 'test_{}.py'.format(case_name))

with open(test_case_file, 'w', encoding='utf-8') as fw:

fw.write(content.format(case_name, project_name, case_name.title(), data.get(root)))

test_cases_files.append(test_case_file)


if test_file:

temp = os.path.dirname(test_file)

py_file = os.path.join(temp, 'test_{}.py'.format(os.path.basename(temp)))

else:

py_file = var


pytest.main([

'-v',

py_file,

'--alluredir',

'report',

'--te',

env,

'--capture',

'no',

'--disable-warnings',

])


for file in test_cases_files:

os.remove(file)


return test_cases_files

可以看到,测试文件中有一个TestxxAPI的类,它只有一个test_cases_data属性,并没有testxx方法,所以还不是被pytest认可的测试用例,根本运行不起来。那么它是怎么解决这个问题的呢?答案就是CaseMetaClass。


function_express = """

def {}(self, response, validata):

with allure.step(response.pop('case_name')):

validator(response,validata)"""



class CaseMetaClass(type):

"""

根据接口调用的结果自动生成测试用例

"""


def __new__(cls, name, bases, attrs):

test_cases_data = attrs.pop('test_cases_data')

for each in test_cases_data:

api = each.pop('api')

function_name = 'test' + api

test_data = [tuple(x.values()) for x in each.get('responses')]

function = gen_function(function_express.format(function_name),

namespace={'validator': validator, 'allure': allure})

# 集成allure

story_function = allure.story('{}'.format(api.replace('_', '/')))(function)

attrs[function_name] = pytest.mark.parametrize('response,validata', test_data)(story_function)


return super().__new__(cls, name, bases, attrs)

CaseMetaClass是一个元类,它读取test_cases_data属性的内容,然后动态生成方法对象,每一个接口都是单独一个方法,在相继被allure的细粒度测试报告功能和pytest提供的参数化测试功能装饰后,把该方法对象赋值给test+api的类属性,也就是说,TestxxAPI在生成之后便有了若干testxx的方法,此时内部再运行起pytest,pytest也就能发现这些用例并执行了。


def gen_function(function_express, namespace={}):

"""

动态生成函数对象, 函数作用域默认设置为builtins.__dict__,并合并namespace的变量

:param function_express: 函数表达式,示例 'def foobar(): return "foobar"'

:return:

"""

builtins.__dict__.update(namespace)

module_code = compile(function_express, '', 'exec')

function_code = [c for c in module_code.co_consts if isinstance(c, types.CodeType)][0]

return types.FunctionType(function_code, builtins.__dict__)

在生成方法对象时要注意namespace的问题,最好默认传builtins.__dict__,然后自定义的方法通过namespace参数传进去。

后续(yml测试文件自动生成)

至此,框架的核心功能已经完成了,经过几个项目的实践,效果完全超过预期,写起用例来不要太爽,运行起来不要太快,测试报告也整的明明白白漂漂亮亮的,但我发现还是有些累,为什么呢?
我目前做接口测试的流程是,如果项目集成了swagger,通过swagger去获取接口信息,根据这些接口信息来手工起项目创建用例。这个过程很重复很繁琐,因为我们的用例模板已经大致固定了,其实用例之间就是一些参数比如目录、用例名称、method等等的区别,那么这个过程我觉得完全可以自动化。

因为swagger有个网页啊,我可以去提取关键信息来自动创建.yml测试文件,就像搭起架子一样,待项目架子生成后,我再去设计用例填传参就可以了。

于是我试着去解析请求swagger首页得到的HTML,然后失望的是并没有实际数据,后来猜想应该是用了ajax,打开浏览器控制台的时,我发现了api-docs的请求,一看果然是json数据,那么问题就简单了,网页分析都不用了。


import re

import os

import sys


from requests import Session


template ="""

args:

- {method}

- {api}

kwargs:

-

caseName: {caseName}

{data_or_params}:

{data}

validator:

-

json:

successed: True

"""



def auto_gen_cases(swagger_url, project_name):

"""

根据swagger返回的json数据自动生成yml测试用例模板

:param swagger_url:

:param project_name:

:return:

"""

res = Session().request('get', swagger_url).json()

data = res.get('paths')


workspace = os.getcwd()


project_ = os.path.join(workspace, project_name)


if not os.path.exists(project_):

os.mkdir(project_)


for k, v in data.items():

pa_res = re.split(r'[/]+', k)

dir, *file = pa_res[1:]


if file:

file = ''.join([x.title() for x in file])

else:

file = dir


file += '.yml'


dirs = os.path.join(project_, dir)


if not os.path.exists(dirs):

os.mkdir(dirs)


os.chdir(dirs)


if len(v) > 1:

v = {'post': v.get('post')}

for _k, _v in v.items():

method = _k

api = k

caseName = _v.get('description')

data_or_params = 'params' if method == 'get' else 'data'

parameters = _v.get('parameters')


data_s = ''

try:

for each in parameters:

data_s += each.get('name')

data_s += ': \n'

data_s += ' ' * 8

except TypeError:

data_s += '{}'


file_ = os.path.join(dirs, file)


with open(file_, 'w', encoding='utf-8') as fw:

fw.write(template.format(

method=method,

api=api,

caseName=caseName,

data_or_params=data_or_params,

data=data_s

))


os.chdir(project_)

现在要开始一个项目的接口测试覆盖,只要该项目集成了swagger,就能秒生成项目架子,测试人员只需要专心设计接口测试用例即可,我觉得对于测试团队的推广使用是很有意义的,也更方便了我这样的懒人。

最后作为一位过来人也是希望大家少走一些弯路,如果你不想再体验一次学习时找不到资料,没人解答问题,坚持几天便放弃的感受的话,在这里我给大家分享一些软件测试的学习资源,希望能给你前进的路上带来帮助。

视频文档获取方式:
这份文档和视频资料,对于想从事【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴我走过了最艰难的路程,希望也能帮助到你!以上均可以分享,点下方小卡片即可自行领取。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值