牛顿插值算法与实现

本文介绍了牛顿插值算法,指出其相对于拉格朗日插值法在实现上的优势。通过均差的递推关系式和牛顿插值公式阐述算法原理,并讨论了如何减少空间复杂度至O(n)。还提供了C++代码实现,包括插入点更新和多项式求值的优化方法,整个插值过程的时间复杂度为O(n*n)和O(n)。
摘要由CSDN通过智能技术生成

牛顿真是牛,拉格朗日插值法只能算是数学意义上的插值,从插值基函数的巧妙选取,已经构造性的证明了插值法的存在性和惟一性,但是从实现的角度看并不很好,而牛顿很好的解决了这个问题。

牛顿插值是基于下面这些的公式:

f[x0,x1,...xk]=(f[x1,...xk]-f[x0,...xk-1])/(xk-x0)
f[x]=f(x)
f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)

前两个是均差的递推关系式,而后一个就是牛顿插值公式,其中N(x)=f(x)-Rn(x),即目标多项式,Rn(x)是n阶插值余项,我们就是用N(x)去近似f(x)。

可以构造这样一个均方差表:

xk   f(xk)   一阶均差   二阶均差 ...
x0   f(x0)
x1   f(x1)     f[x0,x1]
x2   f(x2)     f[x1,x2]     f[x0,x1,x2]
...

如果有n个点插值,表会有(n*n)/2+n个表项,如果直接编程会有O(n*n)的空间复杂度,编程时做个简单的改进,不难发现在这个表中只有部分数据有用,对角线(斜行)它们是目标值,用来表示多项式的,左边的两纵行(实际上只需要x一行)以及最底下的一行,表示当前插值的状态。经过改进后只需要O(n)的空间复杂度。

两个过程:
1,新增加一个点时的更新。只须更新最底下一行数据,其递推关系由均差公式给出,最后算出高一队的均差值,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值