牛顿真是牛,拉格朗日插值法只能算是数学意义上的插值,从插值基函数的巧妙选取,已经构造性的证明了插值法的存在性和惟一性,但是从实现的角度看并不很好,而牛顿很好的解决了这个问题。
牛顿插值是基于下面这些的公式:
f[x0,x1,...xk]=(f[x1,...xk]-f[x0,...xk-1])/(xk-x0)
f[x]=f(x)
f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)
前两个是均差的递推关系式,而后一个就是牛顿插值公式,其中N(x)=f(x)-Rn(x),即目标多项式,Rn(x)是n阶插值余项,我们就是用N(x)去近似f(x)。
可以构造这样一个均方差表:
xk f(xk) 一阶均差 二阶均差 ...
x0 f(x0)
x1 f(x1) f[x0,x1]
x2 f(x2) f[x1,x2] f[x0,x1,x2]
...
如果有n个点插值,表会有(n*n)/2+n个表项,如果直接编程会有O(n*n)的空间复杂度,编程时做个简单的改进,不难发现在这个表中只有部分数据有用,对角线(斜行)它们是目标值,用来表示多项式的,左边的两纵行(实际上只需要x一行)以及最底下的一行,表示当前插值的状态。经过改进后只需要O(n)的空间复杂度。
两个过程:
1,新增加一个点时的更新。只须更新最底下一行数据,其递推关系由均差公式给出,最后算出高一队的均差值,