MYSQL最基本的GROUP BY的使用
1) 基本使用
可以使用GROUP BY子句将表中的数据分成若干组
SELECT column, group_function(column)
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[ORDER BY column];
结论1:SELECT中出现的非组函数的字段必须声明在GROUP BY中。
反之,GROUP BY中声明的字段可以不出现在SELECT中。
结论2:GROUP BY声明在FROM后面、WHERE后面、ORDER BY前面、LIMIT前面。
2) 使用WITH ROLLUP
SELECT department_id,AVG(salary)
FROM employees
WHERE department_id > 80
GROUP BY department_id WITH ROLLUP;
注意: 当使用ROLLUP时,不能同时使用ORDER BY子句进行结果排序,即ROLLUP和ORDER BY是互相排斥的。
使用 WITH ROLLUP,此函数是对聚合函数进行求和,注意 with rollup是对 group by 后的第一个字段,进行分组求和。
3. HAVING
1) 基本使用
过滤分组:HAVING子句
- 行已经被分组。
- 使用了聚合函数。
- 满足HAVING 子句中条件的分组将被显示。
- HAVING 不能单独使用,必须要跟 GROUP BY 一起使用。
SELECT department_id, MAX(salary)
FROM employees
GROUP BY department_id
HAVING MAX(salary)>10000 ;
要求
- 如果过滤条件中使用了聚合函数,则必须使用HAVING来替换WHERE。否则,报错。
- 当过滤条件中没有聚合函数时,则次过滤条件声明在WHERE中或HAVING中都可以。但是,建议声明在WHERE中的执行效率高。
- HAVING必须声明在GROUP BY 的后面
- 开发中,我们使用HAVING的前提是SQL中使用了GROUP BY。
2) WHERE和HAVING的对比
区别1:WHERE 可以直接使用表中的字段作为筛选条件,但不能使用分组中的计算函数作为筛选条件; HAVING 必须要与 GROUP BY 配合使用,可以把分组计算的函数和分组字段作为筛选条件。
这决定了,在需要对数据进行分组统计的时候,HAVING 可以完成 WHERE 不能完成的任务。这是因为, 在查询语法结构中,WHERE 在 GROUP BY 之前,所以无法对分组结果进行筛选。HAVING 在 GROUP BY 之 后,可以使用分组字段和分组中的计算函数,对分组的结果集进行筛选,这个功能是 WHERE 无法完成 的。另外,WHERE排除的记录不再包括在分组中。
区别2:如果需要通过连接从关联表中获取需要的数据,WHERE 是先筛选后连接,而 HAVING 是先连接 后筛选。
这一点,就决定了在关联查询中,WHERE 比 HAVING 更高效。因为 WHERE 可以先筛选,用一 个筛选后的较小数据集和关联表进行连接,这样占用的资源比较少,执行效率也比较高。HAVING 则需要 先把结果集准备好,也就是用未被筛选的数据集进行关联,然后对这个大的数据集进行筛选,这样占用 的资源就比较多,执行效率也较低。
小结如下:
关键字 | 用法 | 缺点 |
---|---|---|
WHERE | 先筛选数据再关联,执行效率高 | 不能使用分组中的计算函数进行筛选 |
HAVING | 可以使用分组中的计算函数 | 在最后的结果集中进行筛选,执行效率较低 |
开发中的选择:
WHERE 和 HAVING 也不是互相排斥的,我们可以在一个查询里面同时使用 WHERE 和 HAVING。包含分组 统计函数的条件用 HAVING,普通条件用 WHERE。这样,我们就既利用了 WHERE 条件的高效快速,又发 挥了 HAVING 可以使用包含分组统计函数的查询条件的优点。当数据量特别大的时候,运行效率会有很 大的差别。
4. SELECT的执行过程
1) 查询的结构
#方式1:
SELECT ...,....,...
FROM ...,...,....
WHERE 多表的连接条件
AND 不包含组函数的过滤条件
GROUP BY ...,...
HAVING 包含组函数的过滤条件
ORDER BY ... ASC/DESC
LIMIT ...,...
#方式2:
SELECT ...,....,...
FROM ... JOIN ...
ON 多表的连接条件
JOIN ...
ON ...
WHERE 不包含组函数的过滤条件
AND/OR 不包含组函数的过滤条件
GROUP BY ...,...
HAVING 包含组函数的过滤条件
ORDER BY ... ASC/DESC
LIMIT ...,...
#其中:
#(1)from:从哪些表中筛选
#(2)on:关联多表查询时,去除笛卡尔积
#(3)where:从表中筛选的条件
#(4)group by:分组依据
#(5)having:在统计结果中再次筛选
#(6)order by:排序
#(7)limit:分页
需要记住 SELECT 查询时的两个顺序:
1. 关键字的顺序是不能颠倒的:
SELECT ... FROM ... WHERE ... GROUP BY ... HAVING ... ORDER BY ... LIMIT...
1. SELECT 语句的执行顺序(在 MySQL 和 Oracle 中,SELECT 执行顺序基本相同):
FROM -> WHERE -> GROUP BY -> HAVING -> SELECT 的字段 -> DISTINCT -> ORDER BY -> LIMIT
比如你写了一个 SQL 语句,那么它的关键字顺序和执行顺序是下面这样的:
SELECT DISTINCT player_id, player_name, count(*) as num # 顺序 5
FROM player JOIN team ON player.team_id = team.team_id # 顺序 1
WHERE height > 1.80 # 顺序 2
GROUP BY player.team_id # 顺序 3
HAVING num > 2 # 顺序 4
ORDER BY num DESC # 顺序 6
LIMIT 2 # 顺序 7
在 SELECT 语句执行这些步骤的时候,每个步骤都会产生一个 虚拟表 ,然后将这个虚拟表传入下一个步 骤中作为输入。需要注意的是,这些步骤隐含在 SQL 的执行过程中,对于我们来说是不可见的。
2) SQL的执行原理
SELECT 是先执行 FROM 这一步的。在这个阶段,如果是多张表联查,还会经历下面的几个步骤:
- 首先先通过 CROSS JOIN 求笛卡尔积,相当于得到虚拟表 vt(virtual table)1-1;
- 通过 ON 进行筛选,在虚拟表 vt1-1 的基础上进行筛选,得到虚拟表 vt1-2;
- 添加外部行。如果我们使用的是左连接、右链接或者全连接,就会涉及到外部行,也就是在虚拟 表 vt1-2 的基础上增加外部行,得到虚拟表 vt1-3。
-
当然如果我们操作的是两张以上的表,还会重复上面的步骤,直到所有表都被处理完为止。这个过程得 到是我们的原始数据。
-
然后进入第三步和第四步,也就是 GROUP 和 HAVING 阶段 。在这个阶段中,实际上是在虚拟表 vt2 的 基础上进行分组和分组过滤,得到中间的虚拟表 vt3 和 vt4 。
-
当我们完成了条件筛选部分之后,就可以筛选表中提取的字段,也就是进入到 SELECT 和 DISTINCT 阶段 。
-
首先在 SELECT 阶段会提取想要的字段,然后在 DISTINCT 阶段过滤掉重复的行,分别得到中间的虚拟表 vt5-1 和 vt5-2 。
-
当我们提取了想要的字段数据之后,就可以按照指定的字段进行排序,也就是 ORDER BY 阶段 ,得到 虚拟表 vt6 。
-
最后在 vt6 的基础上,取出指定行的记录,也就是 LIMIT 阶段 ,得到最终的结果,对应的是虚拟表 vt7 。
-
当然我们在写 SELECT 语句的时候,不一定存在所有的关键字,相应的阶段就会省略。
同时因为 SQL 是一门类似英语的结构化查询语言,所以我们在写 SELECT 语句的时候,还要注意相应的 关键字顺序,所谓底层运行的原理,就是我们刚才讲到的执行顺序。