1. Machine learning definition:
“A computer programis said to learn from experience E with respect to some task T and someperformance measure P, if its performance on T, as measured by P,improves with experience E.”
2. Machine learning algorithms:
1) Supervised learning
a. Regression: Predict continuous valued output (price)
b. Classification: Discrete valuedoutput (0 or 1)
2) Unsupervised learning
3) Reinforcement learning, recommender systems
3. Linear regression with one variable
1) Hypothesis: h_{\Theta }(x)=\Theta _{0}+\Theta _{1}x
Parameters:
Cost function:
Goal: minimize
2) Gradient descent
Repeat until convergence {}
a. Small , slowconvergence; Large , maybefail or diverge.
b. Fixed , couldconverge to local minimums too. No need to decrease.
3) Gradient descent for linearregression
Repeat until convergence
4) “Batch” Gradient Descent
Each step. All the training examples are used.