Week 1 Course Introduction

1.      Machine learning definition:

“A computer programis said to learn from experience E with respect to some task T and someperformance measure P, if its performance on T, as measured by P,improves with experience E.”

 

2.      Machine learning algorithms:

1)      Supervised learning

a.      Regression: Predict continuous valued output (price)

b.      Classification: Discrete valuedoutput (0 or 1)

2)      Unsupervised learning

3)      Reinforcement learning, recommender systems

 

3.      Linear regression with one variable

1)     Hypothesis: h_{\Theta }(x)=\Theta _{0}+\Theta _{1}x

Parameters:

Cost function:  

Goal: minimize

2)     Gradient descent

Repeat until convergence {}

a.      Small , slowconvergence; Large , maybefail or diverge.

b.      Fixed , couldconverge to local minimums too. No need to decrease.

3)   Gradient descent for linearregression

Repeat until convergence


4)      “Batch” Gradient Descent

Each step. All the training examples are used.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值