IIS托管管道模式的集成和经典比较

IIS托管管道模式的集成和经典比较

 

IIS改善和发展的主要因素是IIS已经成为应用程序(特别是ASP.NET)的支持平台。通过将ASP.NET直接集成到IIS 7.0中,IIS 7.0进一步推动了平台的发展。从管理功能到身份验证,乃至请求处理管道本身,相关功能都已经集成到IIS 7.0之中。将管道集成到IIS 7.0中具有两个好处:一是为基于ASP.NETWeb应用程序及IIS 7.0扩展提供了更好的性能,二是通过使用托管代码获得了更好的控制能力。

ASP.NET的性能之所以能够得到改善,是因为ASP.NET应用程序不再需要退出管道并加载ISAPI进程来处理ASP.NET代码,然后再返回到管道为客户提供响应信息。为了保持应用程序的兼容性,IIS 7.0仍然支持经典管道模式,但是,现在应该尽可能地使用新的集成管道。

1. 经典模式

IIS 6.0中,ASP.NET扮演了一个ISAPI过滤器的角色,也就是说,请求退出管道后,由aspnet.dll进行处理,然后返回到管道进行进一步处理,最终将响应返回给客户端。如图2-4所示,在IIS 6.0中,一个客户端的HTTP请求将沿着管道移动,直到确定了一个处理程序,如果这个文件是一个ASP.NET文件,那么它就转入ASP.NET ISAPI过滤器,通过ISAPI的处理,在将一个HTTP响应返回给客户端之前,这个请求还将返回管道。IIS 7.0继续提供了这种模式,称为经典模式。

2. 集成管道模式

利用IIS 7.0中的集成管道,开发人员可以将自己的托管代码在管道中集成为一个模块。在先前版本的IIS中,这需要开发ISAPI过滤器或应用程序,对多数开发人员而言,这是一项难度很高的工作。在IIS 7.0中,可以用托管代码开发模块,并且模块可以作为请求管道的组成部分。如图2-5所示,利用IIS 7.0的集成管道模式,可以在管道中处理ASP.NET文件,这样可以在处理过程的任意一个步骤使用ASP.NET代码。因为ASP.NET已经集成到管道中,所以,诸如身份验证之类的ASP.NET功能也可以用于处理非ASP.NET内容。每个请求都可以由IISASP.NET进行处理,而不必考虑其所属类型。

ASP.NET集成也意味着可以使用ASP.NET身份验证对任何文件、文件夹,以及IIS 7.0的功能,从而有效地进行访问控制。在IIS 7.0出现之前,因为ASP.NET需要退出管道才能完成处理工作,所以任何不是由ASP.NET处理的文件,如HTMLPerl,甚至图形图像等内容,都无法由ASP.NET进行处理,因此也不会由ASP.NET身份验证机制来进行访问控制。所以,就必须使用Windows集成的身份验证或自定义的身份验证机制对不是由ASP.NET处理的文件进行访问控制。利用集成管道,可以大大简化身份验证方法的开发工作。

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值