Diffie-Hellman算法

一、Deffie-Hellman 算法简介

Deffie-Hellman(简称 DH) 密钥交换是最早的密钥交换算法之一,它使得通信的双方能在非安全的信道中安全的交换密钥,用于加密后续的通信消息。 Whitfield Diffie 和 Martin Hellman 于 1976 提出该算法,之后被应用于安全领域,比如 Https 协议的 TSL(Transport Layer Security)以 DH 算法作为密钥交换算法。

二、背景知识

首先介绍一些跟DH算法相关的数学知识。

离散对数问题

假设a、p均为素数,则有以下等式:

{ a^1 mod p, a^2 mod p, ..., a^(p-1) mod p } = {1, 2, ... , p-1 }   {} 表示集合

对于任意一个数 x,若 0 < x < p,则必定存在唯一的 y 使得 x = a^y mod p,其中 0 < y < p。当p很大时,很难求出y,所以它能做为DH秘钥交换的基础。

求模公式:((a^x mod p)^y) mod p = a^xy mod p

证明如下:

假设 a^x = mp + n,其中0<n<p,则

C = ((a^x mod p)^y) mod p
  = ((mp+n) mod p)^y mod p 
  = (n mod p)^y mod p
  = n^y mod p
  = (mp&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值