本人对解决算法有兴趣,曾在网上看到过一道阿里巴巴的面试题.
题目是这样的:12个高矮不同的人,排成两排,每排必须是从矮到高排列,而且第二排比对应的第一排的人高,问排列方式有多少种?
所以自己也考虑了一个算法,也在网上看到别人的不同的算法。感觉我这个算法遍历效率很高,而且也很简洁(不敢用最来形容,怕强中更有强中手,当然如果能推导出公式来求解的话肯定会比我这个算法快,这个公式是F(n) = (n! / ((n/2)! * (n/2)!))/ (n/2 +1)).
我的算法思想是这样的:
(1)把排队的问题转换成数字排列问题,类似于0- 11这12个数排成2行。
(2)可以只考虑前一排的情况,因为只要前一排是符合某些条件,剩余的数按顺序放后排自然能满足条件。
(3)第一排数要符合的条件是:
下面数值表示的是位置,
0 1 2 3 4 5
6 7 8 9 10 11
对于位置0,可能的数的范围是0
对于位置1,可能的数的范围是1,2
对于位置2,可能的数的范围是2,3,4
对于位置3,可能的数的范围是3,4,5,6
对于位置4,可能的数的范围是4,5,6,7,8
对于位置5,可能的数的范围是5,6,7,8,9,10
这样可以推导出:
对于位置为n的数,其数的范围是[n, 2n].
这样对于0-5的位置的数的范围就是[{0,1,2,3,4,5}, {0,2,4,6,8,10}],
我们把这个0-5的位置的数当成一个大的数来看待,对其进行++操作,只不过进位的时候是按每个位置的数的范围来进行进位。
比如:
1.目前数是{0,1,2,3,4,5}, ++操作后,数变为{0,1,2,3,4,6},因为6小于且等于位置5的最大值2n = 10,所以此组合是个符合要求的组合。
2.又如目前数是{0,1,2,3,4,10}, ++操作后,数变为{0,1,2,3,4,11},因为11大于位置5的最大值2n = 10, 因此要进位,这样位置4的数++,再检查位置4的数++后是5,小于且等于位置4的最大值2n = 8,这个位置符合条件,而位置5的数要置"0",这个0不能是再从范围的起始值开始,而是要等于位置4的数+1.因为从起始值开始的数肯定是小于位置4的值的。
3.以此类推,如果目前数是{0,1,4,6,8,10},++操作后,需要进位,一步一步往前进位,最终进位位置1的数,数就变成了{0,2,5,7,9,11},然后要把位置1之后位置的每个位置的数置"0", 等于前一个位置的数+1,这样最后数就是{0,2,3,4,5,6}.
4.检查此数组合是否符合条件是,检查最后一个数是否小于且等于其位置的最大值。
附算法如下:
#include <iostream>
#include <vector>
using namespace std;
class pai2dui
{
public:
pai2dui(int n)
:mMaxNum(n / 2)
,mCount(0)
,mAllCount(0)
{
if (n > 1)
{
mCount = 1;
for(