题目描述
在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字。棋盘中留有一个空格,空格用0来表示。空格周围的棋子可以移到空格中。要求解的问题是:给出一种初始布局(初始状态)和目标布局(为了使题目简单,设目标状态为123804765),找到一种最少步骤的移动方法,实现从初始布局到目标布局的转变。
输入
输入初试状态,一行九个数字,空格用0表示
输出
只有一行,该行只有一个数字,表示从初始状态到目标状态需要的最少移动次数(测试数据中无特殊无法到达目标状态数据)
样例输入 复制
283104765
样例输出 复制
4
题解
先将状态中的0位置转化为坐标,将其更新后再转化为状态,出口是当前状态是否为最终状态,记录步数。
#include<bits/stdc++.h>
using namespace std;
string s;
int dx[] = {0, 1, 0, -1}, dy[] = {1, 0, -1, 0};
string ps = "123804765";
struct node{
string cs;
int pos;
int d;
};
int bfs(string s){
queue<node> q;
int cpos = s.find('0');
q.push({s, cpos, 0});
set<string> vis;
vis.insert(s);
while(!q.empty()){
node cnode = q.front();q.pop();
if(cnode.cs == ps){
return cnode.d;
}
int cx = cnode.pos / 3, cy = cnode.pos % 3;
for(int k = 0;k < 4;k ++){
int nx = cx + dx[k], ny = cy + dy[k];
if(nx < 0 || ny < 0 || nx > 2 || ny > 2)continue;
int npos = nx * 3 + ny;
string ns = cnode.cs;
swap(ns[cnode.pos], ns[npos]);
if(!vis.count(ns)){
vis.insert(ns);
q.push({ns, npos, cnode.d + 1});
}
}
}
}
int main(){
cin >> s;
cout << bfs(s) << '\n';
return 0;
}